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A Statistical Criterion for Judging Material 
Models 
Using Bayes Factors to Select the Best Model 

Executive Summary: 

1) The ability to decide objectively between competing material models has always been 
an important engineering task.  For a variety of reasons, simple inspection of the 
general "fit" of various models to the appropriate data does not always result in an 
obvious choice for the superior model, and heretofore there has been no statistical 
measure that can be used to choose between models (except in the simple case of 
“nested” models).  Bayes factors overcome these previous limitations and can provide 
a valid objective statistical measure for choosing between competing material models. 

2) In plain English, the Bayes factor is the ratio of the probability that a model is correct 
to the probability that it is not:  It is the odds of being correct.  A more precise 
definition is:   

The Bayes factor is the (posterior) odds favoring one model versus another when 
the prior oddd of the two models are equal.  After mathematical simplification that is:  

B1,2 = P(data | explanatory model 1) / P(data | explanatory model 2) 

3) Unlike conventional hypothesis testing which sets up a null hypothesis and then tries 
to disprove it, Bayes factors provide a mechanism for evaluating evidence in favor of 
one model over another. 

4) Also unlike conventional hypothesis testing, Bayes factors do not require that 
competing models be “nested” (i.e.: that one model be a subset of a more complex 
model, as with a polynomial model seeking to include or exclude a higher order term).  
Thus Bayes factors can chose among more sophisticated models which might be 
rather different mathematically.  
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Introduction: 

Explaining Bayes factors to an engineering readership perhaps unfamiliar with the 
distinction between say, probability and statistics1, is not unlike explaining a stress 
intensity factor to a statistical readership unfamiliar with the distinction between stress and 
strain1.  While elucidating the statistical underpinnings is necessary, this should augment, 
not compete with, the central exposition.  To make the requisite material available, but still 
begin with the central topic – Bayes factors – I have organized the supporting material into 
appendices, rather than integrating the material into the text, which would make the 
reading tedious.  Thus the reader learns immediately what Bayes factors are and how to 
calculate them, while still having access to the critical background material.   

How This Report Is Organized: 
This report is organized into three sections followed by nine appendices, as follows:   

1) Introductory material and table of contents, 

2) Section 1, Bayes factors, 

3) Section 2, How to Calculate Bayes factors, 

4) Section 3, Random Fatigue Limit Data and Model, 

5) Appendices A and B, WinBUGS (the software necessary to execute Bayesian 
regression) and the supporting code, 

6) Appendices C and D, the R-Project (statistical software for computing Bayes factors 
from the WinBUGS output) and supporting code  

7) Appendix E, Review of Statistical Fundamentals, 

8) Appendix F, Overview of Regression analysis, 

9) Appendix G Notes on Goodness-of-Fit for Statistical Distributions, 

10) Appendix H, A very brief recent chronology of Bayesian methods, 

11) Appendix I, Bibliography. 

It was my original intension to use the random fatigue limit model as the central 
comparative example, however, deficiencies in the model’s ability to describe the Ti6Al4V 
data, discussed herein, precluded extensive use of the model for that purpose.  None of 
this detracts from the utility of Bayes factors in comparing material models, but it does 
suggest that further work on the RFL model itself is necessary before the RFL model can 
be accepted into more widespread use. 

 

                                                      
1   There’s a difference? 
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Bayes Factors  
Bayes’s Theorem and Bayes Factors. 

Bayes's Theorem may look complicated but behind the many integral signs is a rather 
simple statement of joint probability, viz. the joint probability of two events (say, the data 
and the prediction) is the product of their conditional probabilities. 

For example, let the experiment be A and the prediction, B.  Both have occurred, AB.  
The probability of both A and B together is P(AB). .  The law of conditional probability 
says that this probability can be found as the product of the conditional probability of one, 
given the other, times the probability of the other.  That is 

P(A|B) × P(B) = P(AB) = P(B|A) × P(A),  if both P(A) and P(B) are non zero. 

Simple algebra shows that:  

P(B|A) = P(A|B) ×××× P(B) / P(A)                                 Equation 1 

This is Bayes's Theorem is its simplest form.  In words this says that the posterior 
probability of B (the updated prediction) is proportional to the product of the conditional 
probability of the experiment, given the influence of the parameters being investigated, 
times the prior probability of those parameters, with proportionality constant 1/P(A).   

It should be immediately obvious that equation 1 has no off-putting integrals and thus 
may not be recognized as Bayes’s theorem.  While the simple definition uses only fixed 
probabilities for events A and B, for most real applications the probabilities involved are 
not single-valued but rather probability densities.   

Further, P(A) (the total probability of the data) is seldom known directly and must be 
computed by summing over (or integrating over) all possible values for the parameter, θ .  
So y represents the data, and θ  indexes the probability density, and can be a k-dimension 
vector.  Thus, A, in equation 1 is replaced by y, and P(y) becomes the marginal probability 
density of the data, found by integrating out the parameter vector θ.   

 
                                        Equation 2 
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The object then is not to find a single posterior probability, but a probability density, 
indexed by θ.  For example θθθθ = (µ, σ2)T for a normal distribution, where µ is the mean, 
and σ is the standard deviation, or for a regression model where µk = β0 + β1 Xk ,   
θθθθ = (β0 , β1 , σ 2)T.  We will be interested in the ratio of the posterior probability of the 
data, resulting from one model of material behavior to the posterior probability under a 
different material model.  If the resulting odds – the Bayes factor - is sufficiently large (see 
table 1 in the following section) then the data argue for the superiority of one model over 
another. 

Following the convention2 of the Bayesian literature, π( θθθθ ) is the prior density of the 
model’s parameters θ .3  Thus the marginal distribution of the data, y, (see Appendix E, 
figure 8) can be determined by integrating over the model parameter space:   

 
Equation 3a 

 
and   

Equation 3b 
 
 
where f is the conditional probability density of the data, given the model and its 
parameters.  (Conditional, marginal, and joint probability are reviewed in Appendix F.)  
Notice that we are not maximizing over the parameter space, but integrating over it.   

So for both models, the marginal probability of the data is found by summing over both 
models: 

 
                                                       Equation 4 
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explicitly stated as being the more familiar geometric ratio of circumference to diameter.  The use of 
the Greek letter ππππ is to avoid confusion with the Latin p when both are used in the same equation. 
3 In many circumstances the model parameters are constants (e.g. the mean, µ =const.).  In other 
situations the model parameters themselves have hyperparametric probability densities (e.g. 
µ=φ(η, τ2) ).  Of course these hyperparameters too can have hyper-hyperparameters, but as a 
practical matter such further hyperparameterization beyond one level is of little value, unless there is, 
or will be, data at those levels to help estimate them.   
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         Equation 5b 

 
 
 
and if the prior probabilities are equal, i.e. neither model is favored before considering the 
data,  π1(M1) = π2 (M2) = ½ and thus the prior odds are½ / ½ = 1:1 = 1. 

We are now ready to calculate the Bayes factor. 
The Bayes factor is really an odds ratio that reduces to the posterior odds favoring one 
model over another when their prior odds are equal (i.e.: where no preference is given to 
either model in advance of the data).   

 
 
 
 

Equation 6 
 
 
 
 
 
 
 

Equation 7 
 
 
 
So that the posterior odds = Bayes factor X prior odds.  When the prior odds are 
equal, i.e. 1:1, then the Bayes factor equals the posterior odds.  So the Bayes factor 
favoring model 1 over model 2 would be 

B1,2 =  P(data | explanatory model 1) / P(data | explanatory model 2), 

which is read “The Bayes factor favoring Model 1 over Model 2 is the ratio of the 
probability of the data, given model 1 to the probability of the data, given model 2,” in short: 
the Bayes factor is the ratio of the marginal probabilities of the data (for equal prior odds).  
Thus to compute the Bayes factor favoring one material model over another one need 
only compute these two marginal probabilities.  This is no more difficult than “belling the 
cat.”4 

Practical Issues in Computing the Bayes Factor 
It is one thing to define a procedure, and quite another thing to carry it out.  In fact, the 
onerous computational difficulties associated with Bayesian statistics kept the discipline 
estranged from practical application and within the halls of Academia until only recently.  

                                                      
4   In the children’s fairy tale the mice, under continuous threat from the cat, decided that if they had 
some warning of the cat’s proximity they could safely hide.  They decided to hang a noisy bell around 
the cat’s neck as this would surely provide ample warning.  But, they discovered, the implementation 
of their simple plan was far from simple.  Calculating Bayes factors is simple in theory but less so in 
practice.   
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The re-discovery during the 1990s of Markov Chain Monte Carlo5 removed the 
computational fetters from Bayesian methods and allowed them to flourish.  While 
Bayesian computations are now feasible, they still are rather involved, and has been 
observed by Han and Carlin (2001), “ ... all methods require significant human and 
computer effort ...”) 

 

Guidelines for Interpreting Bayes Factors6 

The following table can be used to interpret Bayes Factors.   

Table 1  Bayes Factor Criteria 

B1,2 2 ln B1,2 Interpretation 
Less than 1:1 Negative Supports M2 
1:1 to 3:1 0 to 2 Weak support for M1 
3:1 to 20:1 2 – 6 Support for M1 
20:1 to 150:1 6 – 10 Strong evidence favoring M1 
Greater than 150:1 Over 10 Very strong support for M1 

 

Notice that a Bayes Factor of 20:1 resembles the frequentist “significance level” of 5%. 

The Bayes factor comparing two models for compressive strength of radiata pine ( a 
literature referee problem discussed in detail in Section 2 and in Appendix D) is 4852, 
strong evidence indeed of the superiority of one model over its rival. 

A more familiar problem is the choice between using, say, the Smith-Watson-Topper 
parameter or the Walker equivalent stress parameter in describing s-N behavior.  It was 
originally planned to demonstrate Bayes Factors using the Random Fatigue Limit model 
with the entire 102-point Ti-6Al-4V dataset, and the RFL model is examined in some detail 
in Section 3.  Unfortunately the statistical assumptions for using the RFL model do not 
hold for this dataset, and may be problematic for other data as well.  Nevertheless, using 
only those data with cycle counts less than less than 1.2X105 and a model without a 
mixture of probability densities, does illustrate a Bayes factor comparison. 

The Bayes factor is 22.4 in favor of the SWT against the Sequivalent parameterization for 
this limited dataset which, according to Table 1 above, shows moderate to strong support 
for the SWT parameterization.  Please note that this is NOT a universal conclusion and is 
only presented here to illustrate Bayes factors with real fatigue data.  A listing of the 
calculations is presented in Appendix D.   

But how do you actually calculate the Bayes Factor?  The next section uses a referee 
problem from the statistics literature to compare two simple linear regression models 
describing the compressive strength of radiata pine, as a function of its density, x, or its 

                                                      
5   Markov Chain Monte Carlo (MCMC) should not be confused with the more familiar Monte Carlo 
sampling which shares a similar name but little else.  A comparison of these very different methods 
can be found in Annis, Charles,  “Modeling High Cycle Fatigue with Markov Chain Monte Carlo: A 
New Look at an Old Idea,” AIAA 2002-13800, presented at 43rd AIAA/ASME/ASCE/AHS Structures 
and Dynamics Conference, Denver, CO, 22-25 April, 2002   
6   Table 1 is adapted from Kass and Rafferty (1995) and  Congdon (2001). 
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density adjusted for resin content, z, since resin contributes to the density but not to the 
strength of the wood.  While wood is not usually a material of interest to flight propulsion, 
this example is well-suited to demonstrate the effectiveness of Bayes Factors in 
comparing two similar models.  Here, the form of the models is identical but the 
explanatory variables differ.  An analogous situation might be using stress, rather than 
strain in an s-N model (or competing parameterizations for describing stress).  Since the 
radiata dataset has been widely studied, it also provides a demonstration that the methods 
reported here are valid. 
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How To Calculate Bayes Factors 
Overview: 

The steps for calculating Bayes Factors are presented here, followed by more detailed 
instructions for each step. 

1) For each model, perform a Bayesian regression to determine the numerical estimates 
of the model parameters, and their posterior densities.   

a) In most cases the posterior densities of the model parameters will be Normal, 
providing a posterior mean and standard deviation. 

b) In most cases the posterior density for the variance will inverse gamma, or 
equivalently the density for the precision (precision = 1/variance) will be gamma, 
with parameters for shape and scale. 

2) Create a post-convergence MCMC chain using the converged values for the model 
parameters in place of their densities, and update so that sampling for the precision 
comes from the post-convergence gamma density parameters. 

a) Continue the sampling to generate the post-convergence values for the precision 
density.  This is the key to the Chib algorithm. 

We can now calculate the marginal density of the data, given this model, m(y | Model).  
From equation 10 (page 15), we will need the log of the likelihood, the log of the prior, and 
the log of the posterior. 

3) Compute m(y | Model)  = exp( log.likelihood + log.prior – log.posterior) 

4) Compute the Bayes Factor, BF = m(y | Model 1) / m(y | Model 2) 

We will now discuss each of these steps in detail.  In practice, steps 1 and 2 are 
performed using WinBUGS, and steps 3 and 4 using R.  An example, using a referee 
case from the Bayesian literature (cf.: Han and Carlin, 2001) is provided in Appendix B 
(WinBUGS)  and Appendix D, (R).   

How to Perform a Bayesian Regression: 

WinBUGS is the most popular commercially available software for Bayesian analysis 
(Kass, Carlin, Gelman, and Neal, 1998).  The current (September, 2002) license fee is 
zero dollars ($0.00).  Instructions for downloading the WinBUGS software package are 
provided in Appendix A.  . 

Section 

2
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Building the Graphical Regression Model, Step-by-Step 
While it is possible to write BUGS code directly, the code itself is not executed sequentially 
as it might appear from the code.  The Gibbs algorithm evaluates each conditional density 
in tern and thus may take no heed of the order of statements in the code.  Nevertheless, it 
is easy to avoid possible difficulties by doing all the coding graphically.   

In WinBUGS a directed graph is called a Doodle.  To create a Doodle like figure 7 in 
Appendix B, click Doodle, New, and OK to create a blank Doodle sheet.  Click on the new 
sheet where you want to place the first node, say, the model’s intercept, alpha.  (If you 
create something you didn't intend, make sure it is highlighted, hold the Crtl key, and press 
the delete key.)  The particulars of the new node appear at the top of the sheet.  To 
activate a field, click on its name in blue, and the cursor will be positioned ready for your 
input.  Type alpha in the blank for name.  The default node type is stochastic, and the 
default density is normal, so no changes there are necessary.  While the parameters for 
this node could be read in before executing the complied code, here we will enter them 
directly.  For the mean, type 3000., and for the precision type 1.E-6.  Remember the 
precision is 1/σ2.  This is the prior density for the parameter alpha.  It is centered near its 
MLE (maximum likelihood estimate, as determined from either an earlier Bayesian 
regression or using a conventional estimate from R) and has a very large standard 
deviation of 1000.  Such a prior density is called vague, since it allows the data to 
determine the final result.   

Repeat the process to create the beta node.  The density here is also normal with mean 
185., and precision 1.E-4, corresponding to a standard deviation of 100.   

Next create the y.calc[i] node below the intercept (alpha) and slope (beta) nodes.  To do 
that position the cursor where you want the node and click.  Name the node y.calc[i] 
including the square brackets for the index, i.  Now, while the node is highlighted, hold 
down the Ctrl key and change it to be logical, rather than stochastic, by clicking on type, 
and choosing logical from the drop-down menu.  All logical nodes must be defined when 
you create them.  In the value location type alpha + beta * x[ i ] .  Now, while still editing the 
y.calc[i] node, hold down the Ctrl key and click the alpha node to draw the arrow.  This 
arrow is only cosmetic, and is the only cosmetic feature of a Doodle, since only logical 
functions must be defined when they are created.  Next, while still holding down the Ctrl 
key, click on the beta node to draw the second arrow. 

Now create the precision node, tau.  Click where you want the node to be located and 
enter its name.  This is a stochastic node, with a gamma density.  Click on "density" and 
choose dgamma from the drop-down menu.  (Notice that all probability densities begin 
with "d.")  Enter 3 and 1.8E5 for the shape and scale parameters, respectively.  A plot of 
the gamma density for different values of shape and scale can be found in Appendix F.   

Next, create the node for standard deviation, and label it sig.  To create the node, click 
where you want it located.  Change the type to logical, and for value, enter 1./sqrt(tau).  
Notice the decimal point.  It is good practice to include the decimal when the value is non-
integer.   

Finally create the node for the observed value for y, y.obs[i].  and type in its name, 
including the bracketed counter, [i].  This is a stochastic node, with a normal density.  
Define its mean and precision graphically by first depressing the Ctrl key and clicking on 
the y.calc[i] node, and then the tau node.  If you get the sequence confused, with the Ctrl 
key pressed, re-click on the offending node and the arrow will disappear, along with the 
associated arrant definition. 
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All that remains is to tell WinBUGS that this variable must be incremented.  To create the 
required plate, position the mouse when you want the upper left corner to be, depress the 
Ctrl key, and right-click the mouse.  (Remember, if you create something you didn't intend, 
make sure it is highlighted, hold the Ctrl key, and press the delete key.  To highlight a 
plate, click on its lower right corner.)  Enter the index, i, with no brackets, and its starting 
and ending values, from 1, to Npts.  Npts  will be read-in during compilation. 

Your directed graph is completed.  If you're sure there are no errors, click Doodle, Write 
Code, to create WinBUGS code representing the Doodle.  Although it's easy to write the 
code directly, Spiegelhalter and colleagues (2000) recommend using the Doodle pad 
because a correct Doodle will produce correct code.  All of us are familiar with code that 
compiles but doesn't produce the intended results.   

Helpful Hint:  When building up a directed graph from an existing model by replacing 
constants with hyperparameters, don't forget to remove the previously defined constants 
from the input list for your old model in providing an input list for your new one.  WinBUGS 
will use unintended input values to override DAG nodes having the same name. 

Executing the BUGS Code: Bayesian Regression Step-by-Step 
After the Doodle is complete, the next step is to generate the code. 

Click Doodle, then Write Code.  A new sheet containing the code defined by the directed 
acyclic graph will appear.  If there are logical inconsistencies, variable misspellings, or 
other errors, a notice to that effect will appear in the status window at the bottom of the 
page on the left.  Correct the error and Write Code again, until syntactically correct code is 
generated. 

Next, click on Model, then Specification, to open the specification tool.  Using the mouse, 
highlight the word "model" at the top of the code sheet, and click check model.  If all is 
well, a notice to that effect will appear in the status window at the bottom of the page.  The 
model will require input for defining constants or providing data.  The easiest way to do this 
is with a list, using "S/R"7 syntax, e.g. : 

list( 
Npts=42, 
y.obs=c(3040, 2470, 3610, 3480, 3810, 2330, 1800, 3110, 3160, 2310, 
4360, 1880, 3670, 1740, 2250, 2650, ... 
 

(See Appendix A for a complete example.)   

Notice that numbers defining a vector input must be concatenated using the "c()" syntax. 

Highlight the word "list" and click Load Data, and check the status window to see that the 
data loaded properly.  If an unexpected variable name or a missing variable is 
encountered, it will be noted in the status window. 

                                                      
7   S is a Statistics computing language developed by Bell Labs.  The commercial rights are currently 
held by Insightful Corp and marketed under the name of S-Plus®.  S-Plus is widely used in statistical 
research because its algorithms can be modified by the user, unlike most commercial products.  But 
S-Plus is expensive, and there is available a “freeware” version that is maintained by the academic 
community.  While R does not have many of the refinements of S-Plus, it does have all the serious 
statistical computing capabilities.  Instructions for downloading the R software package are provide in 
Appendix X.   
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Click on Compile.  Check the status window for confirmation. 

WinBUGS needs starting values to begin its iterations.  These can be supplied using 
another list, or in many cases WinBUGS can provide guesses.  To generate initial values 
click Gen Inits, and check the status window.  (It’s a good idea to supply your own initial 
values, if you know them, to avoid a perhaps silly choice from a very broad prior.  It isn’t all 
or nothing: you can supply some initial values, then Gen Inits to generate those 
remaining.)  Here we’ll supply the initial values. 

Inits 
list(alpha= 3000., beta=185., tau=1.1111E-5) 
 

The model is now defined, compiled, initiated, and ready to run. 

Close the Specification Tool, and click on Inference, Samples.  Choose which percentiles 
you wish to monitor.  2.5 and 97.5 are the defaults.  Choose which node you wish to 
monitor by entering the node name in the window, and clicking set.  Enter as many nodes 
as you wish.  Here we will enter in turn, alpha, beta, tau and sig.  To see real time updating 
of the nodes during simulation, enter the node name, or enter an asterisk * to see all the 
nodes you've entered, and click Trace.  

The model is now ready to generate samples.  Before leaving the Sample Monitor Tool, 
enter 10,001 as the beginning observation to use.  Markov Chain Monte Carlo chains 
need to run for a while so that the influence of the starting position is lost.  Leave the 
Sample Monitor Tool open and click Model, Update, to see the Update Tool.  Choose a 
sample size, say 30,000, which means we will record a sample of 20,000.  This may be 
excessive, but a good place to begin.  Arrange the windows so that the Dynamic trace is 
visible and unencumbered. 

Click Update to begin simulation.  Current sampled values from the nodes selected will be 
displayed dynamically. 

When the simulation is complete, select the Sample Monitor Tool window, and click 
History to see all values plotted.  Click Density to see the posterior probability densities 
(figure 1).  Click Stats to see the summary statistics including the mean and standard 
deviation, and the selected quantiles, table 2  

Figure 1  WinBUGS Plots of Posterior Densities 
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Table 2  WinBUGS Statistics 

node     mean    sd      MC error   2.5%    median     97.5%   start  sample 
alpha   2992.0   51.64    0.3663   2891.0   2992.0    3094.0   10001   20000 
beta     184.4   11.65    0.08135   161.3    184.4     207.4   10001   20000 
sig      334.1   35.56    0.2816    272.5    331.0     410.4   10001   20000 
tau   9.261E-6 1.929E-6  1.533E-8  5.938E-6 9.129E-6  1.346E-5 10001   20000 

 

The Bayesian regression is complete, and we are ready to compute the required marginal 
likelihoods that are precursors to Bayes factors.   

How to Build the Post-convergence Gibbs Sampler: 

The Bayesian regression has provided converged samples from the posterior densities for 
the model regression parameters (Table 2).   

We now have the mean and standard deviation for the model parameters alpha (intercept) 
and beta (slope) as well as the standard deviation, and the precision.  We need to sample 
form the post convergence density of the precision (tau, above) to compute it’s posterior 
mean.  To do that we need the shape and scale parameters for the gamma density; what 
we have however are the mean and standard deviation. 

The mean of the gamma density is shape/scale, and the variance is shape/(scale)2  The 
shape and scale parameters can then be calculted directly from the estimates of the mean 
and standard deviation (stdev=variance2) variance in table 2.   

shape.tau.star <- (tau.star/sd.tau.star)^2 
scale.tau.star <-  tau.star/(sd.tau.star^2) 

 

We now change the WinBUGS model to fix the values of alpha and beta, and continue 
sampling from the posterior density for tau.  The result is shown here.   

Table 3  Post-Convergence Values for Precision and Standard Deviation 

node     mean    sd      MC error   2.5%    median     97.5%   start  sample 
sig      332.8   25.48    0.1862    287.6    331.2     387.7   10001   20000 
tau   9.188E-6 1.387E-6  1.005E-8  6.652E-6 9.117E-6  1.209E-5 10001   20000 

 

The key to Chib’s algorithm is estimating the posterior density for tau, not as the density of 
the posterior mean of tau, which would be skewed by infrequent but very large values for 
tau, but rather by the average of the sampled posterior densities.  In other words the 
average of the ordinates of each value drawn from the post-convergence Gibbs sample: 

∑≈
G

g
gdensitytau

G
denityposteriortau .1..                       Equation 8 

Thus it is not the result shown in table 3 that we need but the 20,000 post-convergence 
draws from the gamma density for tau.  In practice these values are easily obtained from 
the WinBUGS sample using the Coda feature, and saving them for further computation in 
R.  The resulting samples are stored as x.tau (for model 1) and z.tau (for model 2)/ 
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How to Calculate the Marginal Likelihood from the WinBUGS 
Results: 

The posterior marginal density for the data under the given model is, from equation 4: 

)|(
)()|()(

yθ
θθyy

π
πfm =

                                          Equation 9 

or in computationally more convenient logarithmic form: 

)|(ˆlog)(log)|(flog)(m̂log yθθθyy *** ππ −+=             Equation 10 

where the caret represents a statistical parameter estimate (since the true value is not 
available) and the superscript star (*) represents the parameter value at it’s posterior 
mean. 

We have all the values needed for θθθθ        ∗  from table 3 and the saved post-convergence 
sample for tau.  All that remains is the calculations. 

The first term is the (log of the) likelihood.  It is the product of the ordinates of a normal 

density for each observed value of y, centered at the model’s estimate, i
**

i xŷ βα +=  

and a standard deviation of σ  *.  The log of this product is the sum of the individual logs, so 
the first term is  

∑=
Npts

i
i

* )y(flog)|(flog θy                                     Equation 11 

and f( .) is the normal density.  

# likelihood 
log.likelihood <- 0. 
for(i in 1:length(CC.df$y)){ 
log.likelihood <- log.likelihood +  
log(dnorm(x=CC.df$y[i], mean=(C1.star + C2.star*CC.df$x.m.xbar[i]), 
   sd=sig.star))} 

 

Programming Aside:  Loops, like the one above, are inefficient in S/R an interpreted, object-oriented 
language that treats arrays as a single object..  The entire log.likelihood loop above, including 
its initial zeroing, could be carried out faster using this single line of R-code: 

# likelihood 
log.likelihood <- sum(log(dnorm(x=CC.df$y, mean=(C1.star +  
   C2.star*CC.df$x.m.xbar), sd=sig.star))) 

The loop syntax is used here to make the calculation more understandable to those less familiar with 
S/R.   
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The second term in equation 10 is the prior density, i.e. the assumed “probability” of the 
model parameters before observing any data.  It is the value of the normal density 
evaluated at the post-convergence values for alpha, beta, and tau, using the prior density 
parameters.  Examination of the R code will clarify this. 

)log()(log)(log)(log **** τβπαππ ++=θ          Equation 12 

where π( ....) is normal.   

# prior 
log.prior.C1 <- log(dnorm(C1.star, mean=mu.C1.prior, sd=sd.C1.prior)) 
log.prior.C2 <- log(dnorm(C2.star, mean=mu.C2.prior, sd=sd.C2.prior))  
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, 
rate=scale.tau.prior)) 
log.prior <- log.prior.C1 + log.prior.C2 + log.prior.tau 
 

It is important to note that the parameters C1, and C2 are assumed to be independent, 
since the data was centered (xcentered = x –mean(x)).  This assumption is not always valid 
and must be verified.  (For the example in Appendix D the correlation between intercept 
and slope in model 1 is -0.003438777, and 0.0004354387 for model 2, thus not 
meaningfully different from zero).  If the correlation is not negligible, then the prior joint 
density for C1 and C2 must be used.  For example:   

# prior (correlated C1 and C2) 
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, 
rate=scale.tau.prior)) 
log.prior.C1.C2 <- log(dmvnorm(x=c(C1.star, C2.star), mean=c(mu.C1.prior, 
mu.C2.prior), sd=c(sd.C1.prior, sd.C2.prior), rho=rho.C1.C2.prior) ) 
log.prior <- log.prior.C1.C2 + log.prior.tau 
 

Of course this result is numerically identical to the case of independent parameters when  
ρ C1,C2 = 0.  In both cases the justification for normal behavior of the model parameters is 
the Central Limit Theorem (see Appendix E).   

The final term in the marginal density is the posterior density of the parameter estimates.   

)|log()|(log)|(log)|(ˆlog **** yyyyθ τβπαππ ++=   Equation 13 

where the first two terms are straight forward: They are the ordinates of the normal 
densities of the converged parameter estimates evaluated at their respective posterior 
means.  The estimate for the posterior of tau is determined from equation 8, above. 

# posterior 
log.posterior.C1 <- log(dnorm(C1.star, mean=C1.star, sd=sd.C1.star)) 
log.posterior.C2 <- log(dnorm(C2.star, mean=C2.star, sd=sd.C2.star))  
log.posterior <- log.posterior.C1 + log.posterior.C2 + log(density.tau.star) 

 
Finally we can calculate the marginal density of the data for this model. 

log.marginal.density.x <- log.likelihood + log.prior - log.posterior 

 
This process is repeated for the second model.  Create and execute a Bayesian 
regression model; Generate 20,000 (say) post-convergence values for the precision, tau; 
and used these results to calculate the model’s likelihood, prior and posterior densities.  
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log.marginal.density.z <- log.likelihood + log.prior - log.posterior 

 
The Bayes factor is then calculated from the ratio of these marginal densities.  Since we 
have worked with logarithms, the Bayes factor requies an exponentiatino.  The Bayes 
Factor in favor of Model 2 over Model 1 isthe inverse of the Bayes Factor  favoring Model 
1 over Model 2:  

1./exp(log.marginal.density.x - log.marginal.density.z) 

 
In the referee example the Bayes factor is “about 4862” (Han and Carlin, 2001).  Since the 
result depends on the random behavior of the Gibbs sampler, some variation will be 
observed.  Han and Carlin also report a range of (4835.1 – 4940.7) using different 
computational methods.   

Since the Bayes Factor is the odds favoring one model over another if their prior odds are 
equal, then a number as large a 4000 is convincing evidence indeed of Model 2’s 
superiority in describing the data.  It is often convenient to compare twice the log of the 
Bayes Factor rather than the Bayes Factor itself.  In this example that quantity is about 17.  

The WinBUGS models, and the R code for computing Bayes Factors is presented in 
Appendices A, B, C, and D.   
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Random Fatigue Limit Data and Model 
The Ti-6Al-4V data are presented in the following table. 

Table 4  RFL data 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comments on Transforming the Data 
Because regression parameters are correlated8.cycles were counted in units of ten-million 
to mitigate numerical difficulties.  Since using natural logarithms (rather than base 10 logs) 
produces a proportionality constant of unity between the CDF and the PDF, the WinBUGS 
model uses natural logs of the transformed cycles, i.e.: lnNobs = ln(N / 10 7). The 
original units are in table 4.   

 

 

                                                      
8 All regression model parameters are correlated (cf.: Fisher, 1925).  Under some circumstances, for 

example when the data are centered at Y,X  some of the model covariances are zero.  (See also 
Annis, 2002, for an example related to crack propagation and strucural llife prediction.)  

Section 

3

spec cycles SWT C spec cycles SWT C spec cycles SWT C
1 11 4,802 114.35 1 35 71 152,993 65.00 1 69 27 1,834,570 55.00 1
2 6 5,210 115.55 1 36 44 153,000 63.73 1 70 133 2,400,000 60.00 1
3 1 5,319 115.02 1 37 45 153,918 63.73 1 71 79 2,684,170 52.50 1
4 7 5,805 107.09 1 38 102 160,971 60.00 1 72 62 2,840,000 57.02 1
5 2 6,737 108.07 1 39 24 183,276 62.50 1 73 63 2,844,620 57.02 1
6 8 9,290 96.62 1 40 46 192,463 60.37 1 74 28 3,247,816 60.00 1
7 3 9,700 102.01 1 41 25 205,774 60.00 1 75 80 3,569,869 51.50 1
8 12 13,790 97.31 1 42 47 209,277 60.37 1 76 64 4,526,292 55.90 1
9 9 16,046 93.38 1 43 48 227,000 59.03 1 77 65 4,760,000 59.03 1

10 4 20,199 84.29 1 44 49 257,988 58.36 1 78 81 5,281,133 55.00 1
11 13 26,336 86.14 1 45 50 290,896 59.03 1 79 82 5,563,469 50.00 1
12 14 34,064 79.51 1 46 51 297,754 59.03 1 80 83 6,086,142 50.00 1
13 19 37,767 77.50 1 47 52 344,000 60.37 1 81 29 6,553,514 60.00 1
14 10 38,841 79.69 1 48 103 363,445 57.00 1 82 66 6,793,930 53.67 1
15 32 42,300 73.79 1 49 104 406,873 61.00 1 83 107 7,049,526 61.00 1
16 5 48,537 78.27 1 50 72 408,178 60.00 1 84 67 7,268,673 57.02 1
17 101 49,629 61.00 1 51 26 474,975 55.00 1 85 108 8,746,159 60.00 1
18 15 50,265 75.12 1 52 53 491,430 63.73 1 86 137 29,714,022 57.02 1
19 33 57,273 73.79 1 53 105 591,316 61.00 1 87 109 44,904,195 57.00 1
20 34 67,900 57.02 1 54 54 633,000 60.37 1 88 84 10,000,000 47.50 2
21 20 68,227 72.50 1 55 55 633,168 60.37 1 89 85 10,000,000 48.00 2
22 35 69,800 67.08 1 56 56 889,000 57.02 1 90 68 10,000,000 50.31 2
23 36 69,866 67.08 1 57 57 953,156 58.14 1 91 69 10,000,000 55.16 2
24 37 73,000 67.08 1 58 73 958,757 60.00 1 92 30 10,000,000 58.00 2
25 38 85,023 69.09 1 59 74 1,015,716 55.00 1 93 31 10,000,000 60.00 2
26 21 88,303 67.50 1 60 106 1,098,728 58.00 1 94 112 100,000,000 57.00 2
27 39 91,557 65.74 1 61 75 1,340,436 57.00 1 95 111 100,000,000 59.00 2
28 40 93,200 63.73 1 62 58 1,370,000 53.67 1 96 115 100,000,000 59.00 2
29 41 98,046 63.73 1 63 76 1,453,661 53.00 1 97 110 100,000,000 60.00 2
30 22 103,346 70.00 1 64 59 1,493,080 57.02 1 98 116 100,000,000 60.00 2
31 42 109,880 67.08 1 65 60 1,646,300 57.02 1 99 113 100,000,000 60.50 2
32 23 112,506 65.00 1 66 61 1,650,000 60.37 1 100 114 100,000,000 60.50 2
33 70 119,054 65.00 1 67 77 1,687,437 55.00 1 101 134 1,000,000,000 50.00 2
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Figure 2  Random Fatigue Limit Model on Semi-log Axes Showing the  
Probability Densities for the Error-in-Cycles and for the RFL. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 also shows,  the probability density for the random fatigue limits (on the right) and 
the density of errors-in-cycles.  Note that a large fraction of the observed variability in 
cycles is explained by the variability in fatigue limits.   

The Random Fatigue Limit (RFL) Model. 

Appendix F describes the workings of ordinary least squares (OLS), which is adequate for 
describing low cycle fatigue data without runouts.  OLS, however, can not deal with 
censored observations, and was superseded by the method of maximum likelihood to 
account for runouts correctly.  However, with the acquisition of very long-life data, 
approaching 109 cycles, standard mathematical descriptions of HCF behavior in the lower 
right corner of the s-N curve were seen to be inadequate, even using censored data 
techniques.  The scatter was clearly not constant over the entire s-N curve, violating one 
of the assumptions of the current mathematical models.  Modifying conventional s-N 
models to include a fixed fatigue limit did not have the hoped-for result: These models 
produced lower bound curves more closely bunched near runout, which is opposite to 
what the data themselves say.    

Actually, there are at least three practical problems with the traditional, large numbers of  
s-N tests, approach to estimating fatigue limits: 

1) At the stress levels of interest, s-N curves are relatively flat.  To get failures below the 
median fatigue limit requires tests that are potentially orders of magnitude longer than 
the desired cyclic life.  The primary interest, of course, is in a stress level at which one 
percent or fewer of the structures would not survive, say, 107 cycles.  While 
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extrapolation of a median s-N curve to the long life of interest may be acceptable, 
estimation of the first percentile of the fatigue limit distribution most likely is not. 

2) The variability of fatigue lives increases greatly as test stresses decrease and a 
general model for this changing scatter has not been accepted.  Thus, extrapolation of 
the percentiles of the fatigue strength to longer lives also requires somehow 
connecting the standard deviation of fatigue lives with stress levels.  

3) Current HCF problems indicate the necessity to define fatigue limits at lives longer 
than 107.  The economic burden of testing runout lives to 108,or longer, only 
compounds the first two problems. 

Because of the enormous scatter in lives at the stress levels of prime interest to HCF, and 
the expense of testing to very long cycle counts, a better method for estimating and 
validating fatigue limits is needed. 

An innovative approach to describing fatigue limit behavior was proposed recently by 
Pascual and Meeker (1999).  They postulated a random fatigue limit (RFL) model in which 
each specimen has its own fatigue limit in much the same way that each specimen has its 
own fatigue lifetime if tested at a sufficiently high stress.  This random fatigue limit is 
explicitly included in the s-N model.  Maximum likelihood methods (described later) are 
then used to estimate the parameters of the s-N equation as well as the parameters of the 
fatigue limit distribution. The percentiles of the fatigue limit distribution are easily calculated 
from the estimated parameters. The random fatigue limit model produces the proper 
shape of the median s-N function and the type of scatter typically seen in fatigue tests at 
HCF stress levels, as is illustrated in figure 2, for Ti-6Al-4V.  Notice the behavior of the 
RFL, shown at the right.  The distribution is skewed downward and so the median (50%) 
necessarily is below the mode (maximum ordinate value). 

Mathematical Formulation of the RFL Model: 
Earlier attempts at modeling the stress-life (s-N) behavior of cyclic fatigue in the long life 
regime used a linear equation relating log(cycles) and log(stress), modified with a constant 
runout stress, or fatigue limit: 

log Ni = β0 + β1 log (Si – β2) + ει                             Equation  14 

where, for specimen i, Ni represents cycles to failure, Si is the applied stress parameter, 
and β2 is a constant fatigue limit (Si>β2), and εi is a random variable representing the 
scatter in cycles to failure about the predicted life.  Typically, the life random variable, ε, 
would be represented by a lognormal distribution with zero mean.  For this assumption, εi 
is the difference between the log life of specimen i and the log median life at the test stress 
Si. The parameters of the median life prediction, β0, β1, and β2 are estimated from test 
data and β2 is interpreted as the fatigue limit stress condition.  Since β2 is an asymptote, 
the s-N curve flattens as S approaches the fatigue limit.  This model is only marginally 
adequate for the median behavior in the long life regime but it is not consistent with the 
commonly observed increase in the standard deviation of lives as S approaches the 
constant fatigue limit (see figure 2).  But the main shortcoming of a constant fatigue limit is 
that it doesn't work.  Since it is a single-valued constant, the fatigue limit, β2, must be less 
than the lowest stress tested (so that the logarithm of (Si - β2) is defined) whether the 
specimen failed at that stress or not.  This causes the β2 asymptote to be so low as to 
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produce an unrealistic material model that had to be continually revised downward to 
accommodate newer, low stress data. 

The random fatigue limit model is a generalization of equation 14 in which the fatigue limit 
term is modeled as a random variable that can be considered to result from inherent, but 
unknown, quality characteristics of each specimen in the population.  Thus the value of the 
fatigue limit is not a single constant, but rather an individual characteristic of each 
specimen (or component).  The RFL model for test specimen i is given by: 

log Ni = β0 + β1 log (Si – γi) + ει                              Equation  15 

where γi is the random fatigue limit for specimen i (Si > γi) and is expressed in units of the 
stress parameter.  In this model, ε is the random life variable associated with scatter from 
specimens that have the same fatigue limit. 

The RFL model produces probabilistic s-N curves that have the characteristics commonly 
seen in HCF data.  This is illustrated in figure 2 which presents the 1st, 5th, 10th, 50th, 90th 
95th and 99th percentile s-N curves as would be determined from the distribution of fatigue 
limits.  The percentile s-N curves display the commonly observed shape in the HCF 
regime.  Further, it is easily seen in figure 2 that a difference in test lives from two 
specimens with slightly different fatigue limits could be quite large.  The increased scatter 
in fatigue lives is explained by different specimens having different fatigue limits and this is 
true regardless of the scatter in life at higher stresses.  Thus, the RFL model 
accommodates not only the flattening of the s-N curve but also the increased scatter that 
is typical of HCF lives.  Experience to date indicates that the fatigue limit scatter dominates 
in the HCF regime when S is close to γi i while the scatter in life is more significant when S 
is large compared to γi. 

There are two random variables in the RFL model for which probability distributions are 
needed.  Experience again suggests the conventional lognormal distribution is appropriate 
for εi, the scatter in cyclic lives.  Thus, the conditional distribution of cycles to failure given γ 
will be a lognormal distribution with mean equal to β0 + β1 log (S – γ) and standard 
deviation equal to σε.  Then ε is lognormal (0,σε).  The Weibull distribution does well 
describing the skewed downward behavior of the random fatigue limit, γi..  The Weibull 
parameters, η, β, represent the 63.2th percentile runout stress, and shape parameter, 
respectively.  Thus η has the same units as the stress metric.  Specimens will have 
inherent, but unknown, quality differences that result in distinct fatigue resistance in the 
long life regime.  The upper limit of runout stress is observed to be more restrictive than 
the lower limit.  That is, while a very low quality specimen is sometimes observed, albeit 
infrequently, extremely high runout stresses are never observed.  (And it is these 
infrequent lower performers that are at the crux of the HCF problem.)  The RFL model 
provides a means to measure the propensity for this life-limiting behavior. 

Figure 2 illustrates another important lesson: Computing the covariance between life and 
stress parameter would be woefully inadequate to describe HCF behavior.  This is 
because the covariance only accounts for the uniform, linear, relationship between 
variables, and in HCF as with many other engineering situations, relationships are not 
linear, nor do they exhibit constant data scatter.   
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Deficiencies in the RFL Model for the Ti-6Al-4V Data 

While the Random Fatigue Limit model is the first major improvement in modeling fatigue 
behavior in decades, it is not without its shortcomings.  These are undeniable when the 
model is used to describe the 102 point Ti-6Al-4V dataset.  These shortcomings are likely 
to be resolved, but at present they present a distraction to more widespread use of the 
model. 

There are two serious difficulties with the model in its present form: 

1) Both the Maximum Likelihood, and Bayesian Maximum Posterior Density algorithms 
for estimating model parameters cannot allocate total model deviation into reasonable 
fractions of errors-in-cycles and random fatigue limits, and tend toward a vanishingly 
small standard deviation of r the errors-in-cycles density.  

2) The formulation of the probability density for the individual, imputed, random fatigue 
limits does not have the proper shape, and correcting this is not as simple as it might 
appear. 

Figure 3 shows the probability density for the individual RFL values fit by the WinBUGS 
model. 

Figure 3 Weibull Density used for the Random Fatigue Limit 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These difficulties are discussed briefly here. 

Simulation studies (not reported here) where the contributions of both the error-in-cycles 
density and the RFL density are known, show that while both MLE and MPD methods will 
produce a realistic model, both methods tend to allocate almost all the error to the RFL 
density.  In fact, Harry Martz, (Johnson, Valen E., Mark Fitzgerald, Harry F. Martz, 1999) 
one of the reviewers of Pascual and Meeker’s original paper (Pascual and Meeker, 1999) 
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observed this tendency.  Furthermore, it is well known in the statistics community that 
maximum likelihood parameter estimation of mixtures of distributions is problematical.  
The classic example being the observed data from a mixture of two densities, N1(µ1 , σ1

2) 
and N2(µ 2 , σ 2

2) with mixing fraction f.  The MLE assigns all the probability to one 
observation with zero variance.  Thus the ordinate of the resulting density at that point is 
infinite, overwhelming any other allocation of probability.  The RFL model shares this 
tendency. 

The Weibull density is parameterized in WinBUGS as equation 16-a, below 

rxr exr)x(f λλ −= −1                                    Equation 16-a 

This parameterization is different from the more common one, in equation 16-b, familiar to 
engineers.  While the engineering parameterization is in terms of the cumulative 
distribution function (cdf) and WinBUGS uses the probability density function (pdf), the  
largest difference is that the scaling by η in the engineering parameterization occurs 
before the exponentiation by β. 

βη )/x(e)x(F −−=1                                   Equation 16-b 

Figure 3 shows that at least qualitatively the Weibull density is adequate for describing the 
behavior of the Random Fatigue Limit Model for these 102 observations.  Actually, 
however, a closer look shows that the fit is not a good as one might hope. 

Figure 4  CDF plot of RFL showing poor quality of Weibull model. 
Censored observations are shown at the top. 
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Note: The ML (maximum likelihood) parameter estimates printed on figure 4, (β =51.48, , η = 10.9) 
differ slightly the WinBUGS estimates (β =51.58, , η = 10.97).  As is evident in figure 4, neither provides 
a good description of the imputed random fatigue limits because the density shape (tail to the left) is 
contrary to the data (tail to the right).  This is the unfortunate consequence of the Weibull not being a 
location-scale density, so the shape necessary to achieve an accurate variance results in a negative 
skew.   

The histogram of these 102 values is presented in figure 5.   

Figure 5  Histogram for the 102 Imputed Random Fatigue Limits Showing  
Poor Fit of the Weibull Density 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Result: Since Bayes factors rely on the quality of the statistical descriptions of the data, 
and since the RFL model for this dataset has poor statistical qualities, further use of Bayes 
factors, without correcting the underlying deficiencies in the RFL model itself, would be 
inappropriate.   

Valuable Statistics Lesson:  The quality of your result is only as good as the reality of 
your statistical assumptions.  In this case the distribution of the imputed individual Random 
Fatigue Limits is not Weibull.  (Further study suggests that it does not appear to follow any 
conventional statistical density either, although transformation may prove useful.)   

 

 

35 40 45 50 55 60

0
10

20
30

40

gamma102



 

Page 26 of 57 

WinBUGS Code for Estimating RFL Model Parameters 

The WinBUGS graphical implementation for estimating values for the Random Fatigue 
Limit model. is presented in  figure 6 

Figure 6  WinBUGS Directed Acyclic Graph (DAD) for RFL Parameter Estimation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The corresponding WinBUGS code is presented here. 

model; 
{ 
   beta ~ dnorm(betaMu,betaTau) 
   lambda ~ dlnorm(lambdaMu,lambdaTau) 
   for( i in 1 : Npts ) { 
      lnNobs[i] ~ dnorm(lnNcalc[i],sigmaTau)I(lnNcensor[i],) 
   } 
   for( i in 1 : Npts ) { 
      lnNcalc[i] <- MVNparm[1] + MVNparm[2] * log(SWTobs[i] - gamma[i]) 
   } 
   eta <- pow(lambda,( - 1.0) / beta) 
   for( i in 1 : Npts ) { 
      gamma[i] ~ dweib(beta,lambda)I(,SWTobs[i]) 

for(i IN 1 : Npts)

MVNpriorMean[]

MVNpriorPrec[ , ]

MVNparm[1:2]

TauScale

TauShape

sig

sigmaTau
betaTau

betaMu

gamma[ i ]

eta

lnNcalc[i]

lambdaTau

lambdaMu

lnNcensor[i]

lnNobs[i]

lambda

SWTobs[i]

beta

lnNcalc[i]

name: lnNcalc[i] type: logical link: identity
value: MVNparm[1]+MVNparm[2]*log(SWTobs[i]-gamma[ i ])
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   } 
   sigmaTau ~ dgamma(TauShape,TauScale) 
   sig <-  1.0 / sqrt(sigmaTau) 
   MVNparm[1:2] ~ dmnorm(MVNpriorMean[],MVNpriorPrec[ , ]) 
} 
 

The resulting parameter estimates is shown in Table 5 

Table 5 WinBUGS RFL Parameter Estimates 

node         mean      sd    MC error   2.5%   median  97.5%   start   sample 
MVNparm[1]   3.303   0.5188   0.04199   2.495   3.214   4.458   10001   20000 
MVNparm[2]  -2.626   0.1346   0.01071  -2.921  -2.606  -2.413   10001   20000 
beta        10.97    0.454    0.03603  10.07   11.03   11.63    10001   20000 
eta         51.58    0.6873   0.03848  50.16   51.61   52.88    10001   20000 
sig          0.1188  0.03828  0.001764  0.06317 0.1123  0.2112  10001   20000 

 
For completeness the 102 imputed values for the random fatigue limits are presented 
below. 

gamma102<-c(49.77, 52.08, 52.11, 47.47, 51, 46.84, 52.09, 53.41, 52.22, 
47.15, 52.13, 48.95, 48.15, 50.51, 45.75, 51.41, 34.82, 48.76, 48.71, 
33.77, 49.02, 43.93, 43.95, 44.33, 47.53, 46.26, 44.82, 42.99, 43.38, 
49.91, 47.52, 45.65, 46.05, 40.81, 47.75, 46.49, 46.52, 43.13, 46.4, 
44.59, 44.6, 45.07, 44.2, 44.24, 45.53, 45.65, 47.68, 44.59, 49.08, 48.1, 
43.79, 52.6, 50.65, 50.28, 50.29, 48.17, 49.51, 51.38, 46.59, 49.82, 
49.42, 46.16, 45.66, 49.74, 50, 53.34, 48.06, 48.22, 48.28, 53.9, 46.68, 
51.31, 51.31, 54.57, 46.28, 51.12, 54.33, 50.49, 45.59, 45.74, 55.84, 
49.58, 56.94, 53.02, 56.26, 54.68, 55, 45.94, 46.5, 48.47, 53.37, 55.69, 
57.54, 56.17, 58.19, 58.1, 59.18, 59.03, 59.53, 59.59, 49.69, 57.48, 
49.77, 52.08, 52.11, 47.47, 51, 46.84, 52.09, 53.41, 52.22, 47.15, 52.13, 
48.95, 48.15, 50.51, 45.75, 51.41, 34.82, 48.76, 48.71, 33.77, 49.02, 
43.93, 43.95, 44.33, 47.53, 46.26, 44.82, 42.99, 43.38, 49.91, 47.52, 
45.65, 46.05, 40.81, 47.75, 46.49, 46.52, 43.13, 46.4, 44.59, 44.6, 
45.07, 44.2, 44.24, 45.53, 45.65, 47.68, 44.59, 49.08, 48.1, 43.79, 52.6, 
50.65, 50.28, 50.29, 48.17, 49.51, 51.38, 46.59, 49.82, 49.42, 46.16, 
45.66, 49.74, 50, 53.34, 48.06, 48.22, 48.28, 53.9, 46.68, 51.31, 51.31, 
54.57, 46.28, 51.12, 54.33, 50.49, 45.59, 45.74, 55.84, 49.58, 56.94, 
53.02, 56.26, 54.68, 55, 45.94, 46.5, 48.47, 53.37, 55.69, 57.54, 56.17, 
58.19, 58.1, 59.18, 59.03, 59.53, 59.59, 49.69, 57.48) 
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WinBUGS: Software for Bayesian Regression 
 
BUGS is almost an acronym for Bayesian inference Using Gibbs Sampling, and is 
software for the Bayesian analysis of complex statistical models using Markov Chain 
Monte Carlo (MCMC) methods, especially the Gibbs sampler.  With the inclusion of a 
GUI for developing directed acyclic graphs, DAGs, it has become the method of choice for 
many Bayesian practitioners and researchers (c.f.: Congdon, 2001). 

How to Download the WinBUGS Software Package 
BUGS was originally a statistical research project at the Medical Research Council 
Biostatistics Unit, Cambridge, UK, and it is now developed jointly with the Imperial College 
School of Medicine at St Mary's, London.  The Windows version, WinBUGS, with a GUI, 
and ability to create graphs that produce code, can be downloaded from the BUGS 
website:   http://www.mrc-bsu.cam.ac.uk/bugs/ 

There is no fee for the use of the demonstration (Internet) version of the WinBUGS 
Package which has some modest size restrictions; however users are required to register 
and to pay a fee to use the full unrestricted version.  The current fee (September, 2002) is 
zero dollars ($0.00).  The current version is 1.3.   

The program is easy to download and install and includes instructions for obtaining the 
full-version licence (sic).  The entire process is straightforward and even the licence (sic) 
key appears to be handled automatically by e-mail. 

 

 

Appendix  
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WinBUGS Graph and Code 
Directed Acyclic Graph 

The Directed Acyclic Graph, DAG, for Model 1 is provided in figure 7...It differs from model 
2 only in that Model 2 uses z, rather than x as the independent variable.  Step-by-step 
instructions for building a DAG, generating, and then executing the WinBUGS code, are 
provide in the text, Section 2. 

Figure 7  Directed Acyclic Graph for Model 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The BUGS code 
model; 
{ 
   for( i in 1 : Npts ) { 
      y.calc[i] <- alpha + beta * x[i] 
   } 
   for( i in 1 : Npts ) { 
      y.obs[i] ~ dnorm(y.calc[i],tau) 
   } 

Appendix 

B
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   tau ~ dgamma( 3.0,1.8E+5) 
   sig <-  1.0 / sqrt(tau) 
   alpha ~ dnorm(3.0E+3,1.0E-6) 
   beta ~ dnorm(185.0,1.0E-4) 
} 
 

Data 
list( 
Npts=42, 
y.obs=c(3040, 2470, 3610, 3480, 3810, 2330, 1800, 3110, 3160, 2310, 4360, 
1880, 3670, 1740, 2250, 2650, 4970, 2620, 2900, 1670, 2540, 3840, 3800, 
4600, 1900, 2530, 2920, 4990, 1670, 3310, 3450, 3600, 2850, 1590, 3770, 
3850, 2480, 3570, 2620, 1890, 3030, 3030) , 
x=c(1.34047619047618130, -3.15952380952381870, 4.44047619047617910, 
3.44047619047618270, 3.64047619047618200, -3.35952380952381800, -
7.95952380952381940, -0.55952380952381731, -0.75952380952381660, -
3.85952380952381800, 5.94047619047617910, -6.35952380952381800, 
4.34047619047618480, -5.35952380952381800, -0.35952380952381802, -
2.25952380952381660, 6.64047619047618200, -1.65952380952381870, -
1.15952380952381870, -6.75952380952381660, -3.75952380952381660, 
2.84047619047618130, 4.84047619047618480, 4.74047619047618340, -
5.75952380952381660, -2.55952380952381730, 2.94047619047618270, 
11.04047619047618100, -5.75952380952381660, 1.34047619047618130, 
2.24047619047618340, 3.54047619047618060, -1.15952380952381870, -
5.75952380952381660, 2.44047619047618270, 4.14047619047618200, -
4.65952380952381870, 2.44047619047618270, 2.04047619047618060, -
7.05952380952381730, 5.34047619047618480, 0.34047619047618127)) 
 

Inits 
list(alpha= 3000., beta=185., tau=1.1111E-5) 

 

Note: The values for x above, and z, below, have been centered on their respective 
means to minimize the correlation9 between the regression parameters alpha and beta. 

z=c(-1.38809523809524290, -4.58809523809524220, 5.41190476190476130, 
4.21190476190475850, 4.11190476190475710, -2.88809523809524290, -
7.58809523809524220, 0.41190476190475778, -0.48809523809524080, -
2.88809523809524290, 6.41190476190476130, -5.78809523809524150, 
2.21190476190475850, -4.78809523809524150, -2.98809523809524080, -
1.48809523809524080, 7.41190476190476130, -1.08809523809524220, -
0.38809523809524293, -6.78809523809524150, -2.88809523809524290, 
3.91190476190475780, 5.81190476190475990, 5.71190476190475850, -
5.98809523809524080, -3.68809523809524010, 3.01190476190475920, 
11.31190476190476000, -5.48809523809524080, 1.71190476190475850, 
2.41190476190475780, 4.61190476190475710, -0.88809523809524293, -
5.38809523809524290, 3.01190476190475920, 3.81190476190475990, -
4.18809523809524010, 3.51190476190475920, -2.98809523809524080, -
8.38809523809524290, 2.61190476190475710, 1.41190476190475780)) 

 

 

 
                                                      

9 For at least 75 years it has been well known in the applied statistics community that regression 
model parameters are correlated (cf.: Fisher, 1925), yet that fact is almost universally unknown to us 
engineers.  Under some circumstances, for example when the data are centered at y,x some of 
the model covariances are zero.   
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The R Project for Statistical Computing 
R is “GNU S” - a language and environment for statistical computing and graphics, similar 
to the award-winning S system, which was developed at Bell Laboratories by a group lead 
by John Chambers.  R is designed as a true computer language with control-flow 
constructions for iteration and alternation, and it allows users to add additional functionality 
by defining new functions. For computationally intensive tasks, C, C++ and FORTRAN 
code can be linked and called at run time. 

How to Download the R Statistics Language 
R can be downloaded from the R Project website, http://www.r-project.org/ 

The GNU license has no fee.  While WinBUGS is only available for the MS Windows 
environment (there are non-graphical versions that run on unix), R is available for many 
operating systems, including Windows.   

Like WinBUGS, the R language is easy to download and install.  R is also easy to use but 
does require some familiarity with statistics since it’s primarily user interface is the 
command line.   
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R Code for Computing Bayes Factors 
The R Code 

The R code for computing the marginal densities and then the Bayes factors is presented 
here.  Instructions for downloading the R statistics language are provided in Appendix C.   

To use the code, first the data must be entered: 

CC.df<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-Plus 
Projects v6.1\\Project 3\\R export\\CC.df.txt", header = TRUE, sep = " ") 
 
x.tau<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-Plus 
Projects v6.1\\Project 3\\R export\\xtau.txt", header = FALSE, sep = "\n") 
x.tau<-x.tau[,] 
 
z.tau<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-Plus 
Projects v6.1\\Project 3\\R export\\ztau.txt", header = FALSE, sep = "\n") 
z.tau<-z.tau[,] 

 
Of course the path must be change to point to the datasets on a particular computer, 
CC.df.txt  being the y, x, z dataset, and x.tau and z.tau are the post-convergence 
WinBUGS draws from the precision densities.  20,000 draws were used in this example. 

The following code can then be copied directly into R, and immediately executed (after 
having removed the comments, of course). 

# Model 1 Prior parameter densities 
mu.C1.prior <- 3000. 
sd.C1.prior <- 1000. 
mu.C2.prior <- 185. 
sd.C2.prior <- 100. 
shape.tau.prior <- 3. 
scale.tau.prior <- 1.8E5 
 
# Parameter estimates from original draws. 
C1.star <- 2992.0 
sd.C1.star <- 51.51 
C2.star <- 184.5 
sd.C2.star <- 11.62 
tau.star <- 9.277E-6 
sd.tau.star <- 1.921E-6 
sig.star <- 333.7 
 
# Estimate the  density of tau.star from auxiliary draws. 
tau.posterior <- 9.197E-6  
sd.tau.posterior <- 1.384E-6 
shape.tau.posterior <- (tau.posterior/sd.tau.posterior)^2 
scale.tau.posterior <-  tau.posterior/(sd.tau.posterior^2) 
shape.tau.posterior 
scale.tau.posterior 
 

Appendix 

D
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G <- length(x.tau) 
p.tau <- matrix(NA, nrow = G, ncol = 1) 
for(g in 1:G) { 
 p.tau[g] <- dgamma(x.tau[g], shape=shape.tau.posterior, 
rate=scale.tau.posterior) 
 } 
density.tau.star <- mean(p.tau) 
 

Programming Aside:  Loops, like the one above, are inefficient in S/R an interpreted, object-oriented language 
that treats arrays as a single object.  The entire density.tau.star loop above, including its initial zeroing, 
could be carried out much faster using this single line of R-code: 

density.tau.star <- mean(dgamma(z.tau, shape=shape.tau.posterior,  
   rate=scale.tau.posterior)) 

The loop syntax is used here to make the calculation more understandable to those less familiar with S/R.   

# likelihood 
log.likelihood <- 0. 
for(i in 1:length(CC.df$y)){ 
log.likelihood <- log.likelihood +  
log(dnorm(x=CC.df$y[i], mean=(C1.star + C2.star*CC.df$x.m.xbar[i]), sd=sig.star)) 
  } 
log.likelihood 
 
# prior 
log.prior.C1 <- log(dnorm(C1.star, mean=mu.C1.prior, sd=sd.C1.prior)) 
log.prior.C2 <- log(dnorm(C2.star, mean=mu.C2.prior, sd=sd.C2.prior))  
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, rate=scale.tau.prior)) 
log.prior <- log.prior.C1 + log.prior.C2 + log.prior.tau 
log.prior 
 
# posterior 
log.posterior.C1 <- log(dnorm(C1.star, mean=C1.star, sd=sd.C1.star)) 
log.posterior.C2 <- log(dnorm(C2.star, mean=C2.star, sd=sd.C2.star))  
log.posterior <- log.posterior.C1 + log.posterior.C2 + log(density.tau.star) 
log.posterior 
 
log.marginal.density.x <- log.likelihood + log.prior - log.posterior 
log.marginal.density.x 
 
# Model 2 Prior parameter densities 
mu.C1.prior <- 3000. 
sd.C1.prior <- 1000. 
mu.C2.prior <- 185. 
sd.C2.prior <- 100. 
shape.tau.prior <- 3. 
scale.tau.prior <- 1.8E5 
 
# Parameter estimates from original draws. 
C1.star <- 2992.0 
sd.C1.star <- 42.93 
C2.star <- 183.1 
sd.C2.star <- 9.387 
tau.star <- 1.341E-5 
sd.tau.star <- 2.794E-6 
sig.star <- 277.6 
 
# Estimate the density of tau.star from auxiliary draws. 
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tau.posterior <- 1.353E-5 
sd.tau.posterior <- 2.044E-6 
shape.tau.posterior <- (tau.posterior/sd.tau.posterior)^2 
scale.tau.posterior <-  tau.posterior/(sd.tau.posterior^2) 
shape.tau.posterior 
scale.tau.posterior 
 
G <- length(z.tau) 
p.tau <- matrix(NA, nrow = G, ncol = 1) 
for(g in 1:G) { 
 p.tau[g] <- dgamma(z.tau[g], shape=shape.tau.posterior, 
rate=scale.tau.posterior) 
 } 
density.tau.star <- mean(p.tau) 
 
# likelihood 
log.likelihood <- 0. 
for(i in 1:length(CC.df$y)){ 
log.likelihood <- log.likelihood +  
log(dnorm(x=CC.df$y[i], mean=(C1.star + C2.star*CC.df$z.m.zbar[i]), sd=sig.star)) 
  } 
log.likelihood 
 
# prior 
log.prior.C1 <- log(dnorm(C1.star, mean=mu.C1.prior, sd=sd.C1.prior)) 
log.prior.C2 <- log(dnorm(C2.star, mean=mu.C2.prior, sd=sd.C2.prior))  
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, rate=scale.tau.prior)) 
log.prior <- log.prior.C1 + log.prior.C2 + log.prior.tau 
log.prior 
 
# posterior 
log.posterior.C1 <- log(dnorm(C1.star, mean=C1.star, sd=sd.C1.star)) 
log.posterior.C2 <- log(dnorm(C2.star, mean=C2.star, sd=sd.C2.star))  
log.posterior <- log.posterior.C1 + log.posterior.C2 + log(density.tau.star) 
log.posterior 
 
log.marginal.density.z <- log.likelihood + log.prior - log.posterior 
log.marginal.density.z 
 
 
1./exp(log.marginal.density.x - log.marginal.density.z) 

 
The example here produced this result: 

> 1./exp(log.marginal.density.x - log.marginal.density.z) 
[1] 4852.227 

 

To use this code the numerical values here would be replaced by those produced by the 
appropriate Bayesian regression models of the two new models being compared. 

Bayes Factor comparison of Smith-Watson-Topper and Sequivalent s-N Models 
The code is presented below for computing the Bayes factors to compare the Smith-
Watson-Topper parameter and the Walker equivalent stress parameter in describing s-N 
behavior using only those data with cycle counts less than 1.1 × 105 in the Ti-6Al-4V 
dataset and a model without a mixture of probability densities.   

RFL.df<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-
Plus Projects v6.1\\Project 3\\R export\\HCF6.txt", header = TRUE, sep = " ") 
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x.tau<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-Plus 
Projects v6.1\\Project 3\\R export\\RFLSWTtau.txt", header = TRUE, sep = "\n") 
x.tau<-x.tau[,] 
 
z.tau<-read.table(file="C:\\Documents and Settings\\user name\\My Documents\\S-Plus 
Projects v6.1\\Project 3\\R export\\RFLSeqTau.txt", header = TRUE, sep = "\n") 
z.tau<-z.tau[,] 
 
# Model 1 Prior parameter densities 
mu.C1.prior <- 4.515 
sd.C1.prior <- 10. 
mu.C2.prior <- 1.82 
sd.C2.prior <- 10. 
shape.tau.prior <- 0.001 
scale.tau.prior <- 0.001 
 
# Parameter estimates from original draws. 
C1.star <- 4.515 
sd.C1.star <- 0.02464 
C2.star <- -4.799 
sd.C2.star <- 0.2805 
tau.star <- 56.84 
sd.tau.star <- 14.97 
sig.star <- 0.1362 
 
# Estimate the  density of tau.star from auxiliary draws. 
tau.posterior <- 58.88 
sd.tau.posterior <- 10.83 
shape.tau.posterior <- (tau.posterior/sd.tau.posterior)^2 
scale.tau.posterior <-  tau.posterior/(sd.tau.posterior^2) 
shape.tau.posterior 
[1] 29.55825 
scale.tau.posterior 
[1] 0.5020083 
 
density.tau.star <- mean(dgamma(x.tau, shape=shape.tau.posterior, 
rate=scale.tau.posterior)) 
density.tau.star 
[1] 0.02640857 
 
# likelihood 
log.likelihood <- sum(log(dnorm(x=RFL.df$y, mean=(C1.star + C2.star*RFL.df$x.SWT), 
sd=sig.star))) 
log.likelihood 
[1] 19.62342 
 
# prior 
log.prior.C1 <- log(dnorm(C1.star, mean=mu.C1.prior, sd=sd.C1.prior)) 
log.prior.C2 <- log(dnorm(C2.star, mean=mu.C2.prior, sd=sd.C2.prior))  
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, rate=scale.tau.prior)) 
log.prior <- log.prior.C1 + log.prior.C2 + log.prior.tau 
log.prior 
[1] -17.66923 
 
# posterior 
log.posterior.C1 <- log(dnorm(C1.star, mean=C1.star, sd=sd.C1.star)) 
log.posterior.C2 <- log(dnorm(C2.star, mean=C2.star, sd=sd.C2.star))  
log.posterior <- log.posterior.C1 + log.posterior.C2 + log(density.tau.star) 
log.posterior 
[1] -0.4973782 
 
log.marginal.density.x <- log.likelihood + log.prior - log.posterior 
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log.marginal.density.x 
[1] 2.45157 
 
# Model 2 Prior parameter densities 
mu.C1.prior <- 4.515 
sd.C1.prior <- 10. 
mu.C2.prior <- 1.82 
sd.C2.prior <- 10. 
shape.tau.prior <- 0.001 
scale.tau.prior <- 0.001 
 
# Parameter estimates from original draws. 
C1.star <- 4.515 
sd.C1.star <- 0.02751 
C2.star <- -5.08 
sd.C2.star <- 0.3355 
tau.star <- 47.19 
sd.tau.star <- 8.679 
sig.star <- 0.1475 
 
# Estimate the density of tau.star from auxiliary draws. 
tau.posterior <- 47.19 
sd.tau.posterior <- 8.679 
shape.tau.posterior <- (tau.posterior/sd.tau.posterior)^2 
scale.tau.posterior <-  tau.posterior/(sd.tau.posterior^2) 
shape.tau.posterior 
[1] 29.56382 
scale.tau.posterior 
[1] 0.6264849 
 
density.tau.star <- mean(dgamma(z.tau, shape=shape.tau.posterior, 
rate=scale.tau.posterior)) 
density.tau.star 
[1] 0.03295491 
 
# likelihood 
log.likelihood <- sum(log(dnorm(x=RFL.df$y, mean=(C1.star + C2.star*RFL.df$x.Seq), 
sd=sig.star))) 
log.likelihood 
[1] 16.27062 
 
# prior 
log.prior.C1 <- log(dnorm(C1.star, mean=mu.C1.prior, sd=sd.C1.prior)) 
log.prior.C2 <- log(dnorm(C2.star, mean=mu.C2.prior, sd=sd.C2.prior))  
log.prior.tau <- log(dgamma(tau.star, shape=shape.tau.prior, rate=scale.tau.prior)) 
log.prior <- log.prior.C1 + log.prior.C2 + log.prior.tau 
log.prior 
[1] -17.4927 
 
# posterior 
log.posterior.C1 <- log(dnorm(C1.star, mean=C1.star, sd=sd.C1.star)) 
log.posterior.C2 <- log(dnorm(C2.star, mean=C2.star, sd=sd.C2.star))  
log.posterior <- log.posterior.C1 + log.posterior.C2 + log(density.tau.star) 
log.posterior 
[1] -0.5651531 
 
log.marginal.density.z <- log.likelihood + log.prior - log.posterior 
log.marginal.density.z 
[1] -0.6569247 
 
exp(log.marginal.density.x - log.marginal.density.z) 
[1] 22.38732 

 



 

Page 37 of 57 

A Review of Statistical Fundamentals  
What IS a “Bayes Factor” anyway? 

A Bayes Factor is defined as the posterior odds favoring one model versus another 
when the prior odds of the two models are equal.  After mathematical simplification that is: 

B1,2 = P(data | explanatory model 1) / P(data | explanatory model 2) 

The odds10 for a binary outcome, is the ratio of favorable to unfavorable probabilities.  The 
odds = P(yes) / P(no) = P(yes) / (1 - P(yes) ), or in other words, the ratio of the probability 
for an event to the probability against.11   

Since these definitions require several other, perhaps unfamiliar, statistical concepts, and 
since our development of Bayes factors depends upon it, the following paragraphs review 
some of this background material, beginning with the difference between “probability” and 
“statistics,” two terms often mistaken to be synonymous.   

Some Statistical Concepts: 

Statistics are functions of the data (observations) that do not contain any unknown 
parameters.  Some statistics have interesting and useful properties, like the sample mean, 
a statistic, that always tends to a normal distribution12.   

statistic: A numerical measure of the sample (the data) or measurable characteristic of 
the sample (data) such as the sample average, or the largest or smallest value observed 
in the sample.  This is distinguished from a similar characteristic of the population, such as 
its mean, which is called a parameter. .It is important to recognize that a sample statistic, 
which changes from sample to sample, is not the population parameter, which is fixed but 
unknown, except for an estimate of it provided by the sample statistic.   

                                                      
10 Note that “odds” is often used with a singular verb as is “mathematics.”  The log of the odds is 
called the logit, and is the basis for logistic regression used in modeling phenomena having a binary 
outcome, such as some types of NDE (nondestructive evaluation).   
11 The odds is not to be confused with the odds ratio, which is the ratio of the odds under two 
different scenarios, for example the failure odds with a proposed maintenance intervention, to the 
odds without the proposed maintenance, or the odds of the data under model 1 to the odds under 
model 2.   
12 The distribution of an average will tend to be Normal as the sample size increases, regardless of 
the distribution from which the average is taken except when the moments of the parent distribution 
do not exist.  .  This is a statement of the Central Limit Theorem.   All practical distributions in 
statistical engineering have defined moments, and thus the CLT applies.  The Cauchy is an example 
of a pathological distribution with nonexistent moments.  Thus the mean (the first statistical moment) 
doesn't exist.   If the mean doesn't exist, then we might expect some difficulties with an estimate of 
the mean like Xbar. 

Appendix 

E
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Probability itself has two, sometimes conflicting, definitions.  The frequentist definition 
sees probability as the long-run expected frequency of occurrence.  P(A) = n/N, where n 
is the number of times event A occurs in N opportunities.  The Bayesian view of probability 
is related to degree of belief.  It is a measure of the plausibility of an event given 
incomplete knowledge.  Both definitions of probability follow the same rules, however. 

Rules of probability (abridged):  The rules of probability form an axiomatic system the 
salient features of which are: 

Probability must be between zero and one inclusive: 0 ≤ P ≤ 1. 

The probabilities in a space sum to 1. 

Addition Law: P(A or B) = P(A) + P(B) - P(A and B).  Note that P(A and B) must be 
subtracted from the sum to avoid double counting situations when A and B both 
occur.  When more than two events are involved this construct becomes unwieldy and 
requires a method for organizing events, such as the directed acyclic graph (DAG). 

Multiplication Law 13 : P(A and B) = P(A) × P(B|A).  Notice that the common practice of 
"multiplying the probabilities" of A and B is only valid when events A and B are 
independent, so that P(B|A) = P(B). 

probability density or distribution:  f(x | θθθθ) where f is the probability density of x, given 
the distribution parameters, θθθθ.  For a normal distribution, θθθθ = (µ, σ2)T where µ is the mean, 
and σ is the standard deviation.  This is sometimes called a pdf, probability density 
function.  The integral of a pdf, the area under the curve (corresponding to the probability) 
between specified values of x, is a cdf, cumulative distribution function, F(x | θθθθ).  For 
discrete f, F is the corresponding summation. 

multivariate distribution:  A joint probability density two or more variables. It is often 
summarized by a vector of parameters, which may or may not be sufficient to characterize 
the distribution completely.  Example, the normal is summarized (sufficiently) by a mean 
vector and covariance matrix.   

joint probability:  f(x, y | θθθθ) where f is the probability of x and y together as a pair, given 
the distribution parameters, θθθθ.   

marginal probability:  f(x | θθθθ) where f is the probability density of x, for all possible values 
of y, given the distribution parameters, θθθθ.  The marginal probability is determined from the 
joint distribution of x and y by integrating over all values of y, called "integrating out" the 
variable y.  In applications of Bayes's Theorem, y is often a matrix of possible parameter 
values.  Joint, marginal, and conditional probability are illustrated in figure 8.   

conditional probability:  f(x | y; θθθθ) where f is the probability of x by itself, given specific 
value of variable y, and the distribution parameters, θθθθ.  (See figure 8.)  If x and y represent 
events A and B, then P(A|B) = nAB/nB ,where nAB is the number of times both A and B 
occur, and nB is the number of times B occurs.  P(A|B) = P(AB)/P(B), since  

P(AB) = nAB/N and P(B) = nB/N so that P(A|B) =
Nn
Nn

B

AB

/
/

= nAB/nB   Note that in general 

                                                      
13   P(A and B) = P(A | B) P(B) but more generally, P(A and B | C) � P(A | B, C) P(B | C) 
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the conditional probability of A given B is not the same as B given A.  The probability of 
both A and B together is P(AB), and P(A|B) × P(B) = P(AB) = P(B|A) × P(A), if both P(A) 
and P(B) are non-zero.  This leads to a statement of Bayes's Theorem:  
P(B|A) = P(A|B) × P(B)/P(A).  Conditional probability is also the basis for statistical  
dependence and independence. 

 
•  Figure 8  Schematic showing joint, marginal and conditional densities 

 

 
independence:   Two variables, A and B, are independent if their conditional probability is 
equal to their unconditional probability.  In other words, A and B are independent if, and 
only if, P(A|B)=P(A), and P(B|A)=P(B).  In engineering terms, A and B are independent if 
knowing something about one tells nothing about the other.  This is the origin of the 
familiar, but often misused, formula P(AB) = P(A) × P(B), which is true only when A and B 
are independent.   

conditional independence:  A and B are conditionally independent, given C, if  
Prob(A=a, B=b | C=c) = Prob(A=a | C=c) × Prob(B=b | C=c) whenever Prob(C=c) > 0.  So 
the joint probability of ABC, when A and B are conditionally independent, given C, is then 
Prob(C) × Prob(A | C) × Prob(B | C)   A directed graph illustrating this conditional 
independence is A ←  C →  B. 

Bayes's Theorem:  A statement of the relationship between sequential events, used to 
infer an antecedent, A, after observing what followed, B: P(A|B) = P(B|A) ×××× P(A) / P(B) 
Bayes’s Theorem is discussed in detail in Section 3.   

Bayesian prior and posterior distributions: Using Bayes's Theorem, the prior 
distribution is what is known about an event before observing the results of an experiment, 
and is updated to the posterior density, by incorporating information learned from the 
experiment. (See conditional probability)   
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Null hypothesis, H0:  In Frequentist reasoning it is a statement that is to be disproved by 
the data.  H0 is usually in the form of a probability density indexed by θθθθ  - e.g.: normal, 
where θθθθ = (µ, σ 2 )T   In contrast, Bayes Factors use the data to provide support for H0.   

Gamma distribution:  Often used as a prior for precision = 1/σ2, or for log(σ 2 ).     

 
 
 
The mean is α /β, and variance is α /β  2.  A special case is  
f( x | 1, β ) = exponential( x |β ). 
 

Figure 9  Gamma Probability Density is Often Used as a Prior for Precision 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Some Necessary Advanced Statistical Concepts 

hyperparameters:  Non-constant parameters for another distribution.  For example, 
suppose x ~ N(µ, σ 2) where the mean, µ, is not constant but is described by its own 
distribution, a hyperdistribution, f (µ | α, β ), where α and β are hyperparameters, and 
f is any proper density.  (A proper density integrates to unity.)  (Under certain limited 
conditions the requirement for a proper hyperparameterization can be relaxed.)    In most 
practical instances all parameters, (µ, σ 2 ) in this example, must be considered jointly.  
Note the symbol  "~" is read " is distributed as...."  For example x ~ N(0, 1) is read  
"x is distributed as normal, with mean zero, variance 1," i.e., x is standard normal. 

Conjugacy:  A conjugate relationship between the prior and posterior densities insures 
that the mathematical form of the posterior is known if the prior takes a given form.  For 
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example, it the prior for a normal mean is normal, then the posterior mean will be normal.  
If the prior for a binomial parameter is a beta density, then the posterior will also be beta.  
Many real applications are not conjugate, however, and thus were all but impossible to 
evaluate until recently.   

likelihood: can be thought of as the “probability of the data,” given specific model 
parameters.  Likelihood is proportional to probability, but the proportionality constant is 
often unknown.  Thus while probabilities must sum to unity, likelihoods, typically, do not.  
Likelihood has the same functional form as a probability density, but whereas with 
probability, the parameter values are assumed known and the probability of a future 
observation is sought, with likelihood the data, having been observed, are known, and the 
parameter values are sought, usually as those that will either maximize the likelihood (i.e. 
the probability that the data would be as there were observed to be) or maximize the 
Bayesian posterior parameter density.  Likelihood is proportional to the ordinate of the 
density function, for uncensored observations. 

maximum likelihood:  a goodness-of-fit criterion that selects model parameters that 
produce the maximum value of the likelihood function. Likelihood is sometimes interpreted 
as "the probability of the data," making a maximum likelihood estimator one which 
maximizes the probability that the experiment turned out the way it did.  Maximum 
likelihood parameter estimates are identical with least-squares (LS) estimates, when 
there is no data censoring.  This is encouraging to engineers who have used LS 
estimators for centuries. 

maximum likelihood estimator, mle:  Value of a parameter in a statistical model that 
maximizes the probability that the experiment turned out the way it did.   The Bayesian 
analog is maximum a posteriori, MAP, estimator - the value that maximized the posterior 
density. 

likelihood ratio: a goodness-of-fit criterion that compares the ratio of the likelihood for 
competing values of the model parameter set with the set that produces the maximum 
likelihood.  Used in constructing confidence regions in the neighborhood of the 
maximum.  The likelihood ratio has a Chi-square distribution(14) with degrees of freedom 
equal to the number of parameters in the model.  Likelihood ratios are similar to Bayes 
factors, but require nested models so that the likelihood proportionality constants in the 
ratio are equal (but unknown), and thus cancel in the ratio.  Bayes factors are based on 
the marginal density, and thus can be compared directly.   

least-squares: (or least-squared error):  A goodness-of-fit criterion that compares the 
model prediction with the data that produced it.   An "error" is defined as the difference 
between an observed response value and the predicted response.  The criterion selects 
model parameters that produce the smallest summed squared error.  This method has 
been used successfully by engineers for over 200 years since Gauss popularized it.  The 
method breaks down however when the data are censored, since the true value of the 
response is not observed, only that it exceeds some censoring value.   

censored data:  An observation known to be greater than (or less than, or bounded by) 
some censoring value, while it's exact value is unknown.  e.g.: a fatigue test runout.  The 
likelihood for a right-censored observation (e.g. a test terminated after N cycles, without 
failing) is equal to one minus the cumulative probability of failure at N cycles. . 

                                                      
14   Strictly speaking these are asymptotic distributions, i.e., for large sample sizes the distribution 
of the parameter approaches the given distribution. 
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Markov chain:  Given the current state Ei for a series of events, E1 ,E2 , ... En, and that 
the probability that the next state is Ej depends only on the current state and not on how 
the current state was achieved.  Then given an n × n matrix of transition probabilities, pi,j , 
sometimes called the transition kernel, the probabilities can be calculated for a series of 
trials (samples from the original series) knowing only the initial state, and the transition 
probabilities.  (Notice that you don't need the entire transition matrix beforehand, only the 
ability to calculate pi,j when in current state i.)  In certain situations the long-run behavior of 
this sample, a Markov chain, becomes independent of the starting state, and converges 
in distribution to some probability density of interest. 

convergence in probability, convergence in distribution:  Engineers are familiar with 
mathematical convergence - that the terminal value of a series approaches some limit as 
the number of terms increases..  They are less familiar with an analogous statistical 
concept of "convergence in distribution," where the characteristic of the limit isn't a 
single value, but rather that the character of the sequence itself approaches some specific 
distribution.  An example is the central limit theorem:   

central limit theorem, CLT:  If x1, x2 , ... xn are a sequence of independent identically 
distributed (iid) random variables, with finite mean µ x and variance σ2

x then z n converges 
in distribution to N(0, 1) as n becomes large, and   

)//()()var(/)(( nxxxExz xxnnnnn σµ−=−=  

where E(.) is the expectation operator.  This result does not depend on the original 
distribution of x, only that the mean and variance are finite.  And "large" n may be on the 
order of a dozen observations.  This concept of convergence in distribution is fundamental 
to the workings of the Metropolis-Hastings MCMC algorithm, and the Gibbs sampler, 
where the behavior of the collection of sampled values approaches the desired probability 
density as n increases.  (Here n typically exceeds 1000.)  In simpler terms the CLT says 
that for large n, the average of n samples taken from any distribution with finite mean and 
variance will have a normal distribution with mean equal to the parent distribution's mean, 
and variance equal to the parent variance divided by the sample size, n.  Much 
Frequentist inference is based on asymptotic theory of the CLT, which in turn is based on 
long-run behavior (large n).  The "Bayesian Central Limit Theorem" is analogous, and 
states that the posterior density of a continuous parameter, θ, is asymptotically normal.   

expectation:  The average.  The expectation operator for a discrete density, f(x), is 
E(x)=Σxf(x), and for continuous density f(x), E(x)=∫∫∫∫    xf(x)dx. 

ergodic:  Time-dependent and other sequential processes are called ergodic if the 
eventual distribution of states in the system does not depend on the starting state so the 
random sequence Sm from time = tn to time = tn+m does not depend on n as n → ∞.   

(direct-sampling) Monte Carlo: A kind of simulation for finding approximate solutions to 
statistical problems that are resistant to closed-form methods.  The procedure is often 
naively misused by simply sampling independently from the various distributions with little 
regard for the interactions among the variables.  Directed acyclic graphs can help organize 
these interrelationships to take advantage of conditional independences, making MCMC 
or Gibbs sampling possible. 
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MCMC, Markov Chain Monte Carlo:  An iterative sampling procedure of which the 
Gibbs Sampler is a special case (Chib and Greenberg, 1995), based on substitution 
sampling, where the true, but unknown, joint posterior density is sampled from using a 
local proposal density and a Markov state-change probability function to accept or reject 
the current offering from the proposal density.  The sequence of samples converges in 
distribution to the desired joint posterior density. 

Gibbs Sampler:  An iterative statistical sampling procedure that samples a variable, 
conditioned on the current values of all other variables, then samples the next variable, 
conditioned on the current, but continuously updated, values of the other variables.  The 
process is repeated some large number of times (say, 1000) until convergence.  It can be 
shown (Carlin and Louis, 1996, pp. 163 ff.) that the sequence of samples converges in 
distribution to the joint posterior density of interest.  Geman and Geman (1984) gave the 
somewhat incongruous name to their algorithm because they saw the distribution of pixel 
"states" in an image is being analogous to the Gibbs distribution of states in solid-state 
physics. 

Bayesian network: a visual representation of a joint probability density over a set of 
random variables linked together by Bayes's theorem where the posterior distribution of 
one application can provide the prior for a subsequent one. 

inference:  In Bayesian networks inference is concerned with calculating the conditional 
probability distribution of a subset of  nodes in a graph, given another subset of the nodes. 

forward sampling:  Sampling in advance of the data.  This is similar to ordinary MC 
simulation for frequentists for whom simulation is detached from data analysis.   

confidence interval (credibility interval): (Frequents' definition)  A numerical interval 
said to contain the true parameter value in some percentage of similar repeated intervals.  
A confidence interval for the binomial parameter, p, for example, could be constructed 
assuming asymptotic normal behavior of maximum likelihood estimators and 
parameters nppandpmean /)1(var ))) −==   So for a (1-α/2) confidence interval, 

where z0.05=1.645, ( nppzppnppzp /)ˆ1(ˆˆ/)ˆ1(ˆˆ −+≤≤−− αα  ) is a 90% CI.  
(Bayesian definition)  An interval said to contain the true value with some given probability, 
also called a Bayesian probability interval.   
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Regression: Building a Mathematical Model 
Fundamentals of Mathematical Regression 

Ordinary Least Squares (OLS): 
When all fatigue specimens fail (no runouts), Ordinary Least-Squares (OLS) is the 
accepted method for estimating the parameters of the s-N model.  This method has been 
the basis of engineering data analysis for the 200 years since Gauss popularized it.   

Some mathematical model is proposed which relates stress (or strain, and/or temperature, 
or other relevant parameter) with cycles to failure, N.  The goal is to choose parameters 
for the model which "best" fits the data.  Gauss said that "best" means that the summed 
squared error of the residuals is a minimum.  (A residual is the difference between an 
observation and the model prediction.)  Another way of saying the same thing is that the 
variance of the observations about the predicted behavior is as small as possible.   

Figure 10  RFL Data, Cycles vs. SWT, log-log axes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Given this criterion for goodness, the OLS method first writes the equation for the sum of 
the squares of the differences between the observed and expected lives.  This relationship 
is then differentiated with respect to each of the model parameters, and these derivatives 
set equal to zero.  The simultaneous solution to these equations (the "Normal" equations) 
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provides the desired least-squares estimates of the parameter values.  (Statisticians don't 
talk about "measuring" a parameter value; they "estimate" it.  That's because the estimate 
will change slightly given different or new data, something that wouldn't happen with 
something which could be measured without error.)  

Now, if the equation chosen to represent the s-N behavior is linear in the model 
parameters, then the solution to the Normal equations can be written down directly: 
Consider y=Xb, where y is the column vector of the dependent variable observations 
(such as log(N)) and X is an n by m matrix of life-controlling variables (such as stress or 
log(stress), and/or temp, or whatever), n is the number of observations, and m is the 
number of model parameters, including the offset.  b is the column vector of length, m, of 
model parameters.  (The first column of X is all ones, unless the offset is defined to be 
zero, and the equation is forced to go through the origin.) The general solution is b-hat = 
(XTX)inv XTY, where the superscript T indicates matrix transpose, and the inv indicates 
its antecedent is to be inverted.  The "hat" (a carat above a parameter) indicates an 
estimate rather than a known value15. 

Censored Data (Runouts):  
The forgoing is a summary of current engineering practice, used with success for 200 
years.  This approach is unworkable, however, if some of the observations are “censored,” 
that if the actual failure lifetime is unknown because the test was stopped before the 
specimen failed.  The OLS approach is based on minimizing the summed squared 
residuals, but because the specimen could have failed at any point after the test was 
suspended, the "error" (residual) can not be defined, thus it can't be included in the 
summed squared error to be minimized, and so the LS method breaks down.   

This problem was solved in the comparatively recent past by R.A. Fisher in the early 
decades of the last century, and brought into engineering practice only about 15 years 
ago.  Fisher looked at the problem of parameter estimation using a different criterion for 
goodness.  Fisher said the "best" parameter value would be the one maximizing the 
likelihood that the experiment would have turned out the way it actually did.  He said that 
you could choose any parameter values you wanted, but some would be more likely to be 
the true values, given the experimental results. 

Likelihood: 
Picture the s-N data with a best-fit line through it (e.g.: figure 10).  Now imagine a (normal) 
distribution of lives scattered about the line, at a constant stress parameter, SWT, for 
example.  The likelihood (of the line's being in the right place) is the ordinate of the 
probability distribution which is centered at the model value of N.  Obviously, if the line is 
nowhere near the data, the normal distribution won't be centered appropriately, and the 
ordinates evaluated at the N values will be low.  We want to put the curve through the data 
so its likelihood is maximized.   

The method of maximum likelihood is approached as was the method of least-squares: 
beginning with the likelihood equation, which is just the product of all the individual 
likelihoods.  For practical purposes it's helpful to take the log of the likelihood equation 

                                                      
15   One of the most serious sources of confusion about statistics is the difference between the true – 
but unknowable – value of a parameter, and an estimate of it, based on the data.  Much of 
contemporary engineering “probabilisitcs” is questionable, if not altogether wrong, due to ignorance of 
this difference.   
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because it turns all the products into sums (of logarithms).  Next, differentiate this equation 
with respect the model parameters.  (It's much easier to differentiate a sum than a series 
of products.)  These derivatives are set equal to zero and the resulting equations are 
solved simultaneously.  This usually requires an iterative solution.  Now, because the 
logarithm is a monotone function, it reaches a maximum when the variable of which it the 
logarithm reaches a maximum, so the solution to the maximum of the log of the likelihood 
occurs at the same parameter values as the maximum of the likelihood function itself.   

OLS estimators ARE ML estimators: 
How do parameters estimated with Fisher's maximum likelihood criterion compare with 
those estimated using Gauss's least-squares criterion?  They are EXACTLY the same.  
Not close - exact - (given that the errors are normally distributed, which is usually the 
case.)  That means that if there were NO censored observations, the ML method 
produces the identical results as the method we've been using for 200 years, a comforting 
situation.   

So what about a runout?  It could be represented by the ordinate at the N cycles where it 
was discontinued, OR at the ordinate at a few cycles more, OR at even more cycles after 
that, since it could have failed at any of those cycle-counts.  Since exactly where the 
failure would have occurred is unknown, only that it has to be after the N observed cycles, 
the relative likelihood (of the curve being in the right place) is that fraction of the area under 
the normal curve to the right of the suspension, since the data were right censored.   This 
definition of likelihood also works for left censored observations and for interval censored 
tests.  (An example of interval censoring could be a test which failed over the weekend.  
The cycle counter was working Friday afternoon, but the specimen was found failed 
Monday morning, and the cycle count is in doubt.  Here the likelihood would be the area 
under a normal curve between the last known cycle count, and the cycle count estimated 
by the test frequency and the duration of the interval.)    

This approach to modeling fatigue data works well for N ≤ 107 cycles but begins to suffer 
when many high cycle runouts must be considered.  This suggests a model that can 
consider not only the variability in N, but also variability in runout stress or fatigue limit. 
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Notes on Goodness-of-Fit Tests for Statistical 
Distributions  

Anderson-Darling 
Of the many quantitative goodness-of-fit techniques (e.g.:  Komolgorov-Smirnov, 
Anderson-Darling, Shipiro-Wilk, von Mises), the Anderson-Darling test seems best for our 
purposes, since it is more sensitive to deviations in the tails of the distribution than is the 
older Komolgorov-Smirnov test. 

Anderson-Darling can be applied to any distribution, but finding the necessary tables of 
critical values may require purchase of D'Agostino and Stephens (1986).  Include here are 
the two most useful tables, for the normal and lognormal, and for the Weibull, exponential, 
and Gumbel.   

For the normal and lognormal distributions, the test statistic, A2 is calculated from 

∑
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where n is the sample size, and w is the standard normal cdf, Φ[(x-µ)/σ]. 

This formula needs to be modified for small samples, 
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and then compared to an appropriate critical value from the table below. 

αααα    0.1 0.05 0.025 0.01 
A2

crit 0.631 0.752 0.873 1.035 

Reference: D'Agostino and Stephens, _Goodness-Of-Fit Techniques, Marcel-Dekker, New York, 1986, 
Table 4.7, p.123.  All of Chapter 4, pp.97-193, deals with goodness-of-fit tests based on empirical 
distribution function (EDF) statistics. 

The other popular family of distributions includes the Weibull for distributions of minima, 
and Gumbel for distributions of maxima.  The Gumbel variable X, and Weibull variable Y 
are related by X=ln(1/Y) .  A Weibull distribution with the shape parameter equal to one 
produces the exponential distribution as a special case.   

For the Weibull (and Gumbel) distributions, the test statistic, A2 is again calculated from 
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just as for the normal, but w is the cdf for the distribution under consideration.  For the 
Weibull, ))/(exp(1)( βηii xxFw −−== , and η, β, are the model scale and shape 
parameters. 

This formula needs to be modified for small samples, 
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and then compared to an appropriate critical value from the table below. 

αααα    0.1 0.05 0.025 0.01 
A2

crit 0.637 0.757 0.877 1.038 

(Ref: D'Agostino and Stephens, 1986, Table 4.17, p.146) 

NOTE: Although the Weibull, a distribution of "weakest-link" minima, is more widely known, it may not 
be the best choice for some of our distributions, as its sister, the Gumbel, the asymptotic distribution of 
maxima. 

Graphical Methods: The InterOcular Trauma Test. 
The InterOcular Taruma Test is simple:  Plot the data.  If it hits you between the eyes, it’s 
significant.  While perhaps facetious, this simple graphical method is very powerful and 
should be part of any statistical analysis.   

Using an appropriate probability grid, plot the cdf (cumulative distribution function) data.  
The data will appear as a straight line on the correct grid.  Fortunately, there are two grids 
that will cover the most common distributions and making additional ones isn't too 
complicated.  

To make a Normal (or Lognormal) grid notice that the y-axis is in terms of number of 
standard deviations, although it's not labeled that way.  So the middle of the graph is at 
y=0 and that corresponds to cdf, F(x) = 0.5 = 50%.  One standard deviation unit up (or 
down) is F(x) = 0.8413 (or 0.1587).  Two units up (or down) is 0.9772 (or 0.0228).  Three 
units up (down) is 9987 (0.0013).  And so on.  These values, and intermediate values 
chosen for graphing purposes, are tabulated everywhere and can be found using MS 
EXCEL also.  If the x-axis is to represent a normally distributed x, then it's Cartesian.  If 
lognormal is what you want, then the x-axis is logarithmic. 

To make a grid for the exponential distribution, we can take advantage of knowing that the 
exponential distribution is a special case of the Weibull, when the slope parameter, beta, 
equals one.  The Weibull grid is even easier to make than the Normal grids because F(x) 
has a closed form (unlike the Normal), viz. ))/(exp(1)( βηixxF −−= .  A little 
arithmetic shows that  



 

Page 49 of 57 

)(1))/(exp( xFx −=− βη                                     Equation 21 

))(1ln()/( xFx −=− βη                                      Equation 22 

)ln()ln()))(1ln(ln()/ln( ηββηβ −=−−= xxFx               Equation 23 

This is a linear equation, Y=M*X+B, where X=ln(x) and Y=ln(-ln(1-F(x))), with slope 
of M = β, and intercept = -β ln(η).  (Remember that β and η are constants for a given fit 
so β ln(η) is also a constant.)   

The grid then is simply Y=ln(-ln(1-F(x))), and X=ln(x).  (Logarithmic x-axis, and 
log(logarithmic) y-axis.)  Notice that the (0, 0) point occurs at x =1 (so that ln(x)=0, and  
y = ≈ 0.632, since ln(-ln(1-0.632)) ≈ 0.  (The actual value is at y=1-exp(-1) ≈  
0.6321205588) 

To plot the data mean ranks are used because they more closely agree with MLE cdf 
plots, than median rank plotting positions.  The mean rank (for the i-th uncensored 
observation,  

1+
=

n
iyi                                                    Equation 24 

where i = 1, 2, 3, ... n, and n is the sample size. 
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A (Brief) Recent History of Bayesian Methods 
Overview of Bayesian Computational Methods 

Consider equation 25, Bayes’s Theorem that was stated earlier and is repeated here: 

 
                                     Equation 25 

 
 
 
 
 
 
Until recently it was simply not possible to perform the necessary integrations.  
Conventional Gaussian quadrature is impractical for models with more than a few 
parameters, because the number of function evaluations increases exponentially with the 
number of dimensions. (Carlin and Louis, 1996), so Bayesians were forced to use 
conjugate relationships16 that were only grossly approximate, and then use approximate 
methods to evaluate the result.  While Bayesian philosophy was very appealing because it 
provides a mechanism for combining prior with current knowledge, in practice Bayesian 
methods were simply too impractical for many applications.   

Rediscovery of Markov Chain Monte Carlo (MCMC) methods (Metropolis, et al. 1953, 
Chib and Greenberg, 1995), especially the Gibbs Sampler (e.g. Casella and George, 
1992), has removed this impediment.  Powerful software, such as WinBUGS, 
(Spiegelhalter, et al.,1996) for performing Bayesian regression and other Bayesian 
computations now put the benefits of Bayesian methods within the reach of the practicing 
engineer.   

While Markov Chain Monte Carlo sounds like the Monte Carlo method familiar to most 
engineers, the two methods have very little in common, other than their name.  To 
understand MCMC it is helpful to put aside what you may know about its namesake. 

Different Flavors of Monte Carlo  

Direct-Sampling Monte Carlo 
The direct methods generate random samples from probability densities and use these 
samples to evaluate some function of interest.  This is usually accomplished through the 

                                                      
16    Conjugate relationships between the prior and posterior densities were the foundation for applied 
Bayesian methods for more than 200 years.  Conjugacy insures that the mathematical form of the 
posterior is known if the prior takes a given form.  For example, it the prior for a normal mean is 
normal, then the posterior mean will be normal.  If the prior for a binomial parameter is a beta density, 
then the posterior will also be beta.  Many real applications are not conjugate, however, and thus 
were all but impossible to evaluate before the advent of Markov Chain Monte Carlo methods during 
the 1990s. 
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inverse of the marginal cumulative distribution function.  (Implicit here, yet often ignored by 
engineers, is that the model parameters are independent, making the closed-form 
statement of the marginal density feasible.)  In practice the (assumed independent) 
parameters are sampled in sequence, and then used in some physical model.  The result 
is recorded and the process repeated many times.  Finally the statistics of the aggregate 
behavior, the recorded values, are computed. 

MCMC, by contrast, samples from a multivariate poster distribution of model parameters.  
The object in Bayesian regression is to determine the highest posterior density for the 
regression model parameters.   

Markov Chain Monte Carlo 
Most engineers are familiar with direct-sampling Monte Carlo, described above, and 
perhaps familiar with some of its variants, indirect methods like importance sampling, 
rejection sampling, and  expectation maximization (EM).  We are less familiar with Markov 
Chain methods like substitution sampling, Gibbs sampling and the Metropolis-Hastings 
algorithm (cf. Carlin and Lewis 1996; MacKay 1999; Ripley, 1996).  Only the MCMC 
methods are unaffected by the "curse of dimensionality," and of these the Metropolis-
Hastings algorithm and particularly the Gibbs Sampler are best suited for evaluating 
Bayesian networks.   

Direct-sampling methods attempt to sample from the entire probability space and thus 
from the joint probability density of interest indirectly, usually inversely through the 
marginal cdfs.  Markov Chain Monte Carlo, MCMC, methods, in contrast, sample 
directly from the joint probability density itself (!)  Because they do not have to sample 
everywhere in the probability space, only where the variables most probably reside, 
MCMC methods are not fettered by the problem of large dimensions.  There is a price for 
all this, of course.  MCMC methods, like all Monte Carlo methods including direct-
sampling, produce, not the joint density itself, but only a sample from it.  (The sample can 
be as large as desired, however.)  Furthermore, the individual elements of the sample are 
autocorrelated.  These problems are easily overcome, however, and are a small price to 
escape the shackles of the "curse."   

These are iterative, rather than direct, sampling methods, and rely on the idea of 
convergence in distribution.  It can be shown (cf.: Carlin and Louis, 1996; MacKay, 
1999) that under suitable conditions that the sequence of samples taken under the 
Metropolis-Hastings or Gibbs Sampler algorithms ultimately becomes ergodic, with 
elements of the sequence representing samples from the joint probability density being 
simulated.  The original idea was proposed nearly 50 years ago by Metropolis and 
colleagues at Los Alamos National Laboratory to simulate atomic physics (Metropolis, et 
al., 1953).   

To implement the transition kernel (e.g.: Ripley, 1996) the original Metropolis algorithm 
required a symmetric function as part of its transition decision rule. The algorithm was 
improved by Hastings, (Hastings, 1970), who removed the requirement for symmetry in 
the candidate density and devised a more refined transition rule.  For some well-posed 
problems, including many of those that can be represented by a directed, acyclic graph, 
DAG, the Gibbs Sampler is even more effective.  Although Gemen and Geman (1984) 
noted the similarity of their algorithm with that of Metropolis, et al., it is only recently 
recognized as being a special case of Metropolis-Hastings (Chib and Greenberg, 1995).  
The Gibbs sampler is easier to implement if all the probabilities are supplied in terms of 
their conditional densities (MacKay, 1999).  Many implementations of the Gibbs sampler, 
such as WinBUGS, can take advantage of any conjugate relationships, resorting to the 
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more general, but slower to converge, Metropolis Hastings algorithm when necessary 
(Spiegelhalter, et al.,1996, see also Carlin and Louis, 1996). 

It could be argued that MCMC methods are the most important discovery in applied 
statistics since R.A. Fisher proposed likelihood as a criterion for parameter estimation, 
replacing the method-of-moments in the early decades of the last century.  While Bayes 
factors themselves are not new -Jeffries first proposed them in 1935, (Kass and Raffery, 
1995) - MCMC methods, especially the ideas of Chib (1995) and Chib and Jeliazkov 
(2001, 2002), have finally made computing them feasible.  

 



 

Page 53 of 57 

Bibliography 
 
1) Annis, Charles, "Bayesian Network Analysis of the 1-D Oscillator Problem - A 

Directed Acyclic Graph Paradigm for Probabilistic High Cycle Fatigue Risk 
Assessment," supported under Independent Contractor Agreement  
01-S441-48-01-C4, Universal Technology Corporation Prime Contract  
F33615-98-C-2807, September, 2001 

2) Annis, Charles, “Modeling High Cycle Fatigue with Markov Chain Monte Carlo: A New 
Look at an Old Idea,” AIAA 2002-13800, presented at 43rd AIAA/ASME/ASCE/AHS 
Structures and Dynamics Conference, Denver, CO, 22-25 April, 2002   

3) Annis, C., “Probabilistic Life Prediction Isn't as Easy as It Looks,” Probabilistic 
Aspects of Life Prediction, ASTM STP-1450, W. S. Johnson and B.M. Hillberry, 
Eds., ASTM International, West Conshohocken, PA, 2003. 

4) Berger, James O. Statistical Decision Theory and Bayesian Analysis, 2nd ed., 
Springer-Verlag, 1985 

5) Best, N.G., and M. K. Cowles and S. K. Vines (1995). CODA Convergence 
Diagnosis and Output Analysis software for Gibbs Sampler output: Version 0.3 

6) Bos, Charles S., “A Comparison of Marginal Likelihood Computational Methods,” 
Faculty of Economics and Operations Research, Vrije Universiteit Amsterdam, Feb., 
2002 

7) Box, George E. P., William G. Hunter, and J. Stewart Hunter, Statistics for 
Experimenters, Wiley, 1978 

8) Box, George. E.P. and George C. Tiao, Bayesian Inference in Statistical Analysis, 
Addison Wesley, 1973 

9) Box, Joan Fisher, R.A. Fisher, the Life of a Scientist, John Wiley & Sons ISBN: 0-
471-09300-9 June 1978  

10) Carlin, Bradley P., and Siddhartha Chib, “Bayesian Model Choice via Markov Chain 
Monte Carlo Methods,” Journal of the Royal Society B Vol. 57, No. 3 pp 173-484, 
1995 

11) Carlin, Bradley P. and Thomas A. Louis, Bayes and Empirical Bayes Methods for 
Data Analysis, Chapman and Hall/CRC, 1996 

12) Casella, G. and George, E., "Explaining the Gibbs Sampler," The American 
Statistician, 46, 167-174, 1992 

Appendix 

I



 

Page 54 of 57 

13) Chib, Siddhartha, “Marginal Likelihood from the Gibbs Output” Journal of the 
American Statistical Association, Vol. 90, No. 432. (Dec., 1995), pp. 1313-1321. 

14) Chib, Siddhartha, “Bayesian Estimation and Comparison of Multiple Change Point 
Models,” John M. Olin School of Business, Washington University, April, 1996. 

15) Chib, Siddhartha, and Ivan Jeliazkov, “Marginal Likelihood from the Metropolis-
Hastings Output,” Journal of the American Statistical Association, Vol. 96, No. 453. 
(March, 2001), pp. 270-281.  

16) Chib, Siddhartha, and Edward Greenberg, "Understanding the Metropolis-Hastings 
Algorithm," The American Statistician, November, 1995, Vol. 49, no. 4, pp. 327-335  

17) Chib, Siddhartha, and Ivan Jeliazkov, “Accept-Reject Metropolis-Hastings Sampling 
and Marginal Likelihood Estimation,” July 2002, working paper to be published. 

18) Congdon, Peter, Bayesian Statistical Modeling, Wiley, 2001 

19) Cox, D. R. and D. V. Hinkley, Theoretical Statistics, Chapman and Hall, 1974 

20) D'Agostino and Stephens, Goodness-Of-Fit Techniques, Marcel-Dekker, New York, 
1986, Table 4.7, p.123.  All of Chapter 4, pp.97-193, deals with goodness-of-fit tests 
based on empirical distribution function (EDF) statistics.) 

21) DeGroot, Morris H., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp336-339 

22) DeGroot, Morris H., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp336-339 

23) Demster, A.P., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp339-341 

24) Di Ciccio, Thomas J., Robert E. Kass, Adrian Raftery, and Larry Wasserman, 
“Computing Bayes Factors By Combining Simulation and Asymptotic 
Approximations,” Journal of the American Statistical Association, Volume 92, Number 
439, September 1997, p.903 

25) Efron, Bradley, "Why isn't everyone a Bayesian? With discussion and a reply by the 
author", American Statistician, 40-1, pp.1-11, ISSN:0003-1305, 1986 

26) Fisher, Ronald A., Statistical Methods for Research Workers.  (First published in 
1925; 14th edition was ready for publication in 1962, when Fisher died, and was 
published in 1990, by the Oxford University Press, along with Experimental Design 
and Scientific Inference, with corrections to the 1991 edition, in1993 

27) Gelfand, Alan E. and Adrian F.M. Smith, “Sampling-Based Approaches to Calculating 
Marginal Densities,” Journal of the American Statistical Association, Volume 85, 
Number 410, June 1990, p.398-409 

28) Geman, S. and Geman, D. "Stochastic Relaxation, Gibbs distributions and the 
Bayesian restoration of images," IEEE Transactions on Pattern Analysis and Machine 
Intelligence, 6:721-742, 1984 



 

Page 55 of 57 

29) Good, I.J., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp342-344 

30) Good, Irving John  and James Flinn Crook, “The Bayes/Non-Bayes Compromise and 
the Multinomial Distribution,” Journal of the American Statistical Association, 
September, 1974, Volume 69, Number 347, pp. 711-720. 

31) Green, Peter, and Tony O’Hagan, “Model choice with MCMC on product spaces 
without using pseudo-priors,” University of Bristol and University of Nottingham, 
Nottingham University Statistics Research Report 98-01, 1998, updated March 2000 

32) Hahn, Gerald J. and William Q. Meeker, Statistical Intervals, A Guide for 
Practitioners, Wiley Interscience, 1991 

33) Han, Cong and Bradley P. Carlin, “Markov Chain Monte Carlo Methods for Computing 
Bayes Factors: A Comparative Review,”  Journal of the American Statistical 
Association, Vol. 96 No. 455, pp.1122-1132   

34) Hastings, W..K., "Monte Carlo Sampling Methods Using Markov Chains and Their 
Applications," Biometrica, 57, 97-109, 1970 

35) Hill, Bruce M., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp344-347 

36) Johnson, Valen E., Mark Fitzgerald, Harry F. Martz, “Discussion: Pascual and Meeker 
- Estimating Fatigue Curves with the Random Fatigue-Limit Model," 
TECHNOMETRICS Vol. 41, No. 4, p.294-296, November 1999. 

37) JRSSB (1993) "Discussion on the Meeting on the Gibbs Sampler and Other Markov 
Chain Monte Carlo Methods, "Journal of the Royal Statistical Society (1993), Series B 
(Methodological )" 55, 53-102 

38) Kass, Robert E. (moderator) and Bradley P. Carlin, Andrew Gelman, and Radford M. 
Neal, "Markov Chain Monte Carlo in Practice: A Roundtable Discussion," Joint 
Statistical Meetings, August 4, 199, reprinted in The American Statistician , May 1998, 
Vol. 2, No. 2, pp.93-100 

39) Kass, Robert E., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp347-349 

40) Kass, Robert E., and Adrian E. Raftery, “Bayes Factors,” Journal of the American 
Statistical Association, June 1995, Volume: 90 Number: 430 Page: pp.773-795   

41) Kendall, Maurice and A. Stuart, The Advanced Theory of Statistics, Vol 2, 
Inference and Relationship, 4th ed., Charles Griffin & Co., 1979  

42) Lawless, Jerald F., Statistical Models and Methods for Lifetime Data, Wiley, 1982 

43) Lindley, D.V., “Lindley’s Paradox: Comment,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp334-336 

44) Lindley, D.V., Bayesian Statistics, A Review, CBMS-NSF Regional Conference 
Series in Applied Mathematics, Society for Industrial and Applied Mathematics, 1972  



 

Page 56 of 57 

45) Lindley, D.V., “A Statistical Paradox,” Biometrika, Volume 44, Issue ½ (June, 1975), 
pp.187-192 

46) MacKay, D.J.C., "Introduction to Monte Carlo Methods," Learning in Graphical 
Models, MIT Press, pp175-204, 1999 

47) Meeker and Escobar, Statistical Methods for Reliability Data, Wiley, 1998. 

48) Metropolis, Nicholas, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. 
Teller, and Edward Teller. "Equations of State Calculations by Fast Computing 
Machines," Journal of Chemical Physics, 21(6), 1087--1092, 1953 

49) Mood, Alexander M., Franklin A. Graybill, and Duane C. Boes, Introduction to the 
Theory of Statistics, 3rd ed., McGraw-Hill, 1974  

50) Neal, Radford M., “Erroneous Results in ‘Marginal Likelihood from the Gibbs Output’“ 
Dept. of Statistics and Dept. Computer Science, University of Toronto, March 1999. 

51) Neter, John, William Wasserman, Michael H. Kutner, Applied Linear Statistical 
Models, 2nd ed., IRWIN, 1985 

52) Oberkampf, William L., “Investigation of Evidence Theory for Engineering 
Applications,”  AIAA 2002-159, presented at the 4th National Non-Deterministic 
Approaches Forum, Denver, CO, April, 2002   

53) Pascual and Meeker, "Estimating Fatigue Curves with the Random Fatigue-Limit 
Model," TECHNOMETRICS Vol. 41, No. 4, p.277-302, November 1999 

54) Press, S. James, Bayesian Statistics, Principles, Models, and Applications, Wiley 
Interscience, 1989 

55) Ripley, Brian D., "Belief Networks," Pattern Recognition and Neural Networks", 
Cambridge University Press, Chapter 8, (1996) 

56) Ritter, Christian, and Martin A. Tanner, “Facilitating the Gibbs Sampler: The Gibbs 
Stopper and the Griddy-Gibbs Sampler, Journal of the American Statistical 
Association, Vol. 87, No. 419, September, 1992, pp. 861-868 

57) Shafer, Glenn, “Lindley’s Paradox,” Journal of the American Statistical Association, 
June 1982, Volume: 77 Number: 378 Page: pp.325-348 

58) Shafer, Glenn, “Rejoinder: Lindley’s Paradox,” Journal of the American Statistical 
Association, June 1982, Volume: 77 Number: 378 Page: pp.349-351 

59) Sinharay, Sandip, and Hal S. Stern, “On the Sensitivity of Bayes Factors to the Prior 
Distributions,” The American Statistician, August 2002, Vol. 56, No. 3, pp.196-201 

60) Spiegelhalter, D.J. and A Thomas and N G Best and W R Gilks (1996). 
BUGS: Bayesian inference Using Gibbs Sampling, Version 0.5, (version ii) 

61) Spiegelhalter, D.J. and A Thomas and N G Best and W R Gilks (1996). 
BUGS Examples Volume 1, Version 0.5, (version ii) 



 

Page 57 of 57 

62) Spiegelhalter, D.J. and A Thomas and N G Best and W R Gilks, BUGS Examples 
Volume 2, Version 0.5, (version ii), 1996 

63) Spiegelhalter, David, Andrew Thomas, and Nicky Best, WinBUGS Version 1.3 User 
Manual (part of the WinBUGS package)  April 2000. 

64) Tierney, Luke, "Markov Chains for Exploring Posterior Distributions," Annals of 
Statistics, Vo. 22, Issue 4, Dec. 1994, pp.1701-1728 

65) Verdinelli, Isabella and Larry Wasserman, “Computing Bayes Factors Using a 
Generalization of the Savage-Dickey Density Ratio,” Journal of the American 
Statistical Association, June 1995, Volume: 90 Number: 430 Page: pp.614-618   




